فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

تحقیق در مورد حلقه ها در ریاضی

اختصاصی از فی توو تحقیق در مورد حلقه ها در ریاضی دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد حلقه ها در ریاضی


تحقیق در مورد حلقه ها در ریاضی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه63

فصل دوم

2-1- حلقه و ایده آل :

تعریف : حلقه مجموعه ای است مانند R  همراه با دو عمل دوتایی که معمولا با جمع و ضرب نشان می دهند به طوری که :

1 .        ( R , +   )  گروه آبلی است .

2 .        به ازای هر  R   α , b , c       (α b ) c = α ( b c ) . ( شرکت پذیر ) 

3 .        . (α + b ) c = α c + b c     , α ( b + c ) = α b + α c ( پخشی )

هرگاه  علاوه بر این :

4 .        اگر به ازای هر R    α , b       α b =  b α  گوییم حلقه تعویض پذیر است .

5 .        هرگاه R  شامل عنصری مانند 1 R  باشد بطوری که : به ازای هر R  α  1R . α = α . 1R = α   آنگاه گوییم R  یک حلقه تعویض پذیر یک دار است .

نکته : عنصر همانی جمعی حلقه عنصر صفر نام دارد و با 0  نمایش داده می شود .

تعریف : فرض کنید S , R  حلقه و R → S  : f  یک نگاشت باشد در این صورت f  را همومورفیسم ( یا همومورفیسم حلقه ای ) گوییم اگر و فقط اگر شرط های زیر برقرار باشند:

1 .        به ازای هر R    α . b       f (α + b ) = f (α ) + f ( b )        ؛

2 .        به ازای هر R    α , b               f (α b ) = f (α ) f ( b )       ؛

3 .        f ( 1 R ) = 1 s  

نکته :  اگر      f : A → B   ,  g : B → C  همومورفیسم حلقه ای باشند آنگاه ترکیبشان نیز همومورفیسم حلقه ای است .

تعریف :  فرض کنید R  یک حلقه تعویض پذیر باشد زیر مجموعه I  از R  را یک ایده آل می نامیم اگر شرط های زیر برقرار باشند :

1 .  I  زیر گروه جمعی R  باشد .

2 . R   r  ،        I    i نتیجه بدهد R    ir  ؛

تعریف :  فرض کنید R  یک حلقه تعویض پذیر باشد . مقسوم علیه صفر R  عضوی مانند R r  است که به ازای آن عضوی مانند R   y  با شرط 0R  ≠  r y  .

تعریف :  فرض کنید R  حلقه تعویض پذیر باشد . در این صورت R  را یک دامنه صحیح می گوییم اگر

1 .        R  حلقه صفر نباشد یعنی 0R  ≠  1R  و

2 .        0R  تنها مقسوم علیه صفر R  باشد .

یا به عبارت دیگر اگر R   α , b            α b = 0 R   آنگاه α = 0 R   یا   b = 0s .

لم 2- 1- 1  : اگر R  دامنه صحیح باشد تنها مقسوم علیه صفر حلقه همان عضو صفر حلقه

است .

برهان :  فرض کنید R   α  مقسوم علیه صفر R  باشد آنگاه R   b  وجود دارد بطوری که α b = 0  و    0 ≠  b . چون R  دامنه صحیح است لذا α = 0  یا b = 0  . ولی 0 ≠ b لذا باید α =0  . بنابراین تنها مقسوم علیه صفر α = 0  عضو صفر آن است .

تعریف : یک حلقه یکدار با خاصیت 0 R  ≠ 1 R  را که هر عنصر تا صفر آن یکه باشد حلقه بخشی نامیم .  

تعریف :  فرض کنید R  حلقه تعویض پذیر باشد . عضور وارون پذیر ( یکه ) R عضوی چون R   r  است که به ازای آن عضوی مانند R   u  وجود داشته باشد بطوری که ru=1R  .

تعریف :  فرض کنید R  حلقه تعویض پذیر باشد . می گوییم R  میدان است اگر :

1 .        R  حلقه صفر نباشد یعنی 0R  ≠  1 R 

2 .        هر عضو ناصفر R  وارون پذیر باشد

یا به عبارت دیگر هر حلقه بخشی تعویض پذیر را میدان گوییم .

نکته :  هر میدان دامنه صحیح است ولی عکس این مطلب در صورت متناهی بودن حلقه برقرار است . ( قضیه 1- 6- 3  و 1- 6- 4  از مرجع [ 3 ]  ) .

تعریف :  فرض کنید S , R  حلقه های تعویض پذیر بوده و f  : R → S  یک

همومورفیسم حلقه ای باشد در این صورت هسته f  را که با ker  f  نشان می دهیم به صورت زیر تعریف می کنیم :    

لم 2- 1- 2  :  فرض کنید S , R  حلقه های تعویض پذیر و f :  R  → S  همومورفیسم حلقه ای باشد در این صورت k e r   f = { 0 R }  اگر و فقط اگر f  یک به یک باشد .

برهان :  فرض کنید R    r ,  و به فرض (  ) f  =  ( r  ) f  . در این صورت

0  =  (  ) f  -  ( r  ) f  =  (  - r  ) f  لذا { 0 }  =  ker  f    - r  . بنابراین = r . یعنی f  یک به یک است . برعکس فرض کنید f  یک به یک باشد و بفرض x  عضو دلخواهی از ker f  باشد در این صورت 0 s  =  ( x )  f  . از طرفی چون 0 s =  ( 0s ) f . بنابراین f ( x ) = 0 s   از طرفی چون f ( 0 R ) = 0 s . بنابراین f ( x ) = f ( 0 R)  و چون f  یک به یک است لذا

x = 0R  .

گزاره 2- 1- 1  :  f  ker  ایده آلی از R  است .

برهان :  فرض کنید    بنابراین داریم f  ( β ) = 0 s  و f (α ) = 0 2  . از طرفی می دانیم f (α + B ) = f (α ) + f  ( β ) = 0 s + 0 s = 0 s    لذا 

Ker  f  α + β  . از طرفی برای R  r   اگر f  ker   κ آنگاه

r ( f ( κ )) = r f ( κ ) = f  ( r κ ) = 02  بنابراین f   ker   rκ  .

تعریف :  فرض کنیده S , R  حلقه های تعویض پذیر و f  :  R  → S  همومورفیسم حلقه

ای باشد در این صورت تصویر f  را که با f  I m   نشان می دهیم به صورت زیر تعریف می شود :              {  R   x  : ( x  )  f  }  =  ( R  )  f  =  I m  f   .

تذکر :  به وضوح f  پوشاست اگر و فقط اگر S  =  f  I m  .

نکته :  فرض کنید   لذا داریم   . یعنی هر چه i  کوچکتر  شود اشتراک رو به بالا می رود و .  لذا اگر  ø  =  I   آنگاه خودمان تعریف می کنیم که  . و اگر ø  =  قرار داد می کنیم  R =      .

تعریف :  فرض کنید A , B  دو ایده آل از حلقه تعویض پذیر R  باشند . آنگاه حاصل ضرب دو ایده آل A , B  را با AB  نمایش می دهیم و به صورت زیر تعریف می شود :

  =  AB  که یک ایده آل از حلقه R  است. در حالت کلیتر اگر   ایده آل هایی روی R  باشند آنگاه : 


دانلود با لینک مستقیم


تحقیق در مورد حلقه ها در ریاضی

تحقیق در مورد حلقه ها در ریاضی

اختصاصی از فی توو تحقیق در مورد حلقه ها در ریاضی دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد حلقه ها در ریاضی


تحقیق در مورد حلقه ها در ریاضی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه93

فصل دوم

2-1- حلقه و ایده آل :

تعریف : حلقه مجموعه ای است مانند R  همراه با دو عمل دوتایی که معمولا با جمع و ضرب نشان می دهند به طوری که :

1 .        ( R , +   )  گروه آبلی است .

2 .        به ازای هر  R   α , b , c       (α b ) c = α ( b c ) . ( شرکت پذیر ) 

3 .        . (α + b ) c = α c + b c     , α ( b + c ) = α b + α c ( پخشی )

هرگاه  علاوه بر این :

4 .        اگر به ازای هر R    α , b       α b =  b α  گوییم حلقه تعویض پذیر است .

5 .        هرگاه R  شامل عنصری مانند 1 R  باشد بطوری که : به ازای هر R  α  1R . α = α . 1R = α   آنگاه گوییم R  یک حلقه تعویض پذیر یک دار است .

نکته : عنصر همانی جمعی حلقه عنصر صفر نام دارد و با 0  نمایش داده می شود .

تعریف : فرض کنید S , R  حلقه و R → S  : f  یک نگاشت باشد در این صورت f  را همومورفیسم ( یا همومورفیسم حلقه ای ) گوییم اگر و فقط اگر شرط های زیر برقرار باشند:

1 .        به ازای هر R    α . b       f (α + b ) = f (α ) + f ( b )        ؛

2 .        به ازای هر R    α , b               f (α b ) = f (α ) f ( b )       ؛

3 .        f ( 1 R ) = 1 s  

نکته :  اگر      f : A → B   ,  g : B → C  همومورفیسم حلقه ای باشند آنگاه ترکیبشان نیز همومورفیسم حلقه ای است .

تعریف :  فرض کنید R  یک حلقه تعویض پذیر باشد زیر مجموعه I  از R  را یک ایده آل می نامیم اگر شرط های زیر برقرار باشند :

1 .  I  زیر گروه جمعی R  باشد .

2 . R   r  ،        I    i نتیجه بدهد R    ir  ؛

تعریف :  فرض کنید R  یک حلقه تعویض پذیر باشد . مقسوم علیه صفر R  عضوی مانند R r  است که به ازای آن عضوی مانند R   y  با شرط 0R  ≠  r y  .

تعریف :  فرض کنید R  حلقه تعویض پذیر باشد . در این صورت R  را یک دامنه صحیح می گوییم اگر

1 .        R  حلقه صفر نباشد یعنی 0R  ≠  1R  و

2 .        0R  تنها مقسوم علیه صفر R  باشد .

یا به عبارت دیگر اگر R   α , b            α b = 0 R   آنگاه α = 0 R   یا   b = 0s .

لم 2- 1- 1  : اگر R  دامنه صحیح باشد تنها مقسوم علیه صفر حلقه همان عضو صفر حلقه

است .

برهان :  فرض کنید R   α  مقسوم علیه صفر R  باشد آنگاه R   b  وجود دارد بطوری که α b = 0  و    0 ≠  b . چون R  دامنه صحیح است لذا α = 0  یا b = 0  . ولی 0 ≠ b لذا باید α =0  . بنابراین تنها مقسوم علیه صفر α = 0  عضو صفر آن است .

تعریف : یک حلقه یکدار با خاصیت 0 R  ≠ 1 R  را که هر عنصر تا صفر آن یکه باشد حلقه بخشی نامیم .  

تعریف :  فرض کنید R  حلقه تعویض پذیر باشد . عضور وارون پذیر ( یکه ) R عضوی چون R   r  است که به ازای آن عضوی مانند R   u  وجود داشته باشد بطوری که ru=1R  .

تعریف :  فرض کنید R  حلقه تعویض پذیر باشد . می گوییم R  میدان است اگر :

1 .        R  حلقه صفر نباشد یعنی 0R  ≠  1 R 

2 .        هر عضو ناصفر R  وارون پذیر باشد

یا به عبارت دیگر هر حلقه بخشی تعویض پذیر را میدان گوییم .

نکته :  هر میدان دامنه صحیح است ولی عکس این مطلب در صورت متناهی بودن حلقه برقرار است . ( قضیه 1- 6- 3  و 1- 6- 4  از مرجع [ 3 ]  ) .

تعریف :  فرض کنید S , R  حلقه های تعویض پذیر بوده و f  : R → S  یک

همومورفیسم حلقه ای باشد در این صورت هسته f  را که با ker  f  نشان می دهیم به صورت زیر تعریف می کنیم :    

لم 2- 1- 2  :  فرض کنید S , R  حلقه های تعویض پذیر و f :  R  → S  همومورفیسم حلقه ای باشد در این صورت k e r   f = { 0 R }  اگر و فقط اگر f  یک به یک باشد .

برهان :  فرض کنید R    r ,  و به فرض (  ) f  =  ( r  ) f  . در این صورت

0  =  (  ) f  -  ( r  ) f  =  (  - r  ) f  لذا { 0 }  =  ker  f    - r  . بنابراین = r . یعنی f  یک به یک است . برع


دانلود با لینک مستقیم


تحقیق در مورد حلقه ها در ریاضی