فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله کامل درباره مفهوم ستون فلزی

اختصاصی از فی توو دانلود مقاله کامل درباره مفهوم ستون فلزی دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کامل درباره مفهوم ستون فلزی


دانلود مقاله کامل درباره مفهوم ستون فلزی

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :13

 

بخشی از متن مقاله

تعریف ستون فلزی:

ستون عنصری است که معولا به صورت عمودی در ساختمان نصب می شود و بارهای کف ناشی از طبقات به تیرو شاهتیر به آن منتقل می گردد وتوسط آن به پی و سپس به زمین انتقال می یابد.

شکل ستونها :

شکل سطح مقطع ستون ها معمولا به مقدار و وضعیت بار وارد شده بستگی دارد.برای ساختن ستونها ی فلزی ازانواع پروفیل ها و ورقها استفاده می شود.عموما ستونها از لحاظ شکل ظاهری به دو گروه تقسیم می شوند:

1- نیمرخ(پروفیل)نورد شده شامل انواع تیرهاوقوطی ها :

بهترین پروفیل نورد شده برای ستون؛تیرآهن بال پهن یاقوطی های مربع شکل است،زیرا از نظر مقاومت بهیر از مقاطع دیگر عمل می کند.ضمن اینکه یشتر مواقع عمل اتصالات تیرها به راحتی روی آنها انجام می گیرد.

2-مقاطع مرکب:

هرگاه سطح مقطع و مشخصات یک نیمرخ به تنهایی برای ایستایی یک ستون کافی نباشد،از اتصال چند پروفیل به کدیگر ستون مناسب آن ساخته می شود.

علل استفاده از مقاطع مرکب در ستون ها:

1- د رصورتی که سطح مقطع نیمرخ های نورد شده تکافوی سطح لازم را برای ستون نکند؛با ساختن مقطع مرکب سطح لازم ساخته می شود.

2- نیاز اجباری به مقاطع با شکل های هندسی خاص از نظر اتصالات دیگر به ستون

چگونگی ساخت ستون(مقاطع مرکب):

ستون ها ممکن است بر حسب نیاز با ترکیب واتصالات متنوع از انواع پروفیلهای مختلف ساخته شوند،اما رایج ترین اتصالها برای ساخت ستون ها سه نوع است:

الف)اتصال دو پروفیل به یکدیگر به طریقه دوبله کردن

ب)اتصال دو پروفیل با یک ورق سراسری روی بالها

ج)اتصال دو پروفیل با بستهای فلزی(تسمه)

شیوه ساختن ستون نوع" الف":

 ابتدا دو تیر آهن در کنار یکدیگر وبرروی سطح صاف بهم چسبیده گردیده،سپس دو سر ووسط ستون ها را جوش داده و ستونها  برگردانده می شوند و مانند قبل جوشکاری صورت می گیرد.آن گاه ستون معکوس و در قسمت وسط جوشکاری می شود.همین کار را در سوی دیگر ستون انجام می دهند و به این ترتیب جوشکاری ادامه می یابد تا جوش مورد نیا ستون تامین گردد.

این شیوه جوش کاری برای جلوگیری از پیچش ستون در اثرحرارت زیاد جوش کاری ممتد می باشد .

در صورتیکه در سریاسر ستون به جوش نیازی نباشد،دست کم طول جوشها باید به این ترتیب اجرا گردد:

1-حداکثر فاصله بین طول های جوش در طول ستون به صورت غیر ممتداز 60 سانتیمتر تجاوز نکند.

2- طول جوش های ابتدایی و انتهایی ستون باید برابر بزرگترین عرض مقطع باشد و به طور یکسره انجام گیرد.

3- طول موثر هر قطعه از جوش منقطع نباید از 4 برابر بعد جوش یا 40 سانتیمتر کمتر باشد.

4- تماس میان بدنه دو پروفیل نباید از یک شکاف 5/1 میلیمتر بیشتر،اما از 6 ملیمتر کمترباشد.

روش ساخت ستون نوع "ب":

 در مقاطع مرکبی که ورق اتصال برروی دو نیمرخ متصل می شودتا مقطع مرکب تشکیل دهد،فاصله جوشهای غیر ممتد که ورق رابه نیمرخ ها متصل میکند نباید از 30 سانتیمتر بیشتر شود.اندازه حداکثر فاصله فوق در مورد فولاد معمولی به صورت 22 در می آید.

ساخت ستون به روش قید،نوع "ج":

متداولترین نوع ستون در ایران ستون ها ی مرکبی است که دو تیرآهن بع فاصله معین از یکدیگر قرار می گیردو قید ها ی افقی یا چپ یا راست این دو نیمرخ را به هم متصل می کند،البته بستها ی چپ وراست که شکلها ی مثلثی را بوجود می آورند دارای مقاومت بهتری نسبت به قیدهای موازی می باشند.در مورد این گونه ستون ها بویژه ستون با قید موازی مسابل زیر را باید رعایت کرد:

1- ابعاد بست افقی ستون کمتر از این مقادیر نباشد:

  : طول وصله حداقل به فاصله مرکز به مرکز دو نمرخ باشدو

  :عرض وصله ازا 42 درصد طول آنکمتر نباشد .

  :ضخامت وصله از 35/1 طول آن کمتر نباشد.

2-در اطراف کلیه وصله ها ودرسطح تماس با بال نیمرخ های عمل جوشکاری انجام گیرد.

3-فاصله قید ها و ابعاد آن بر اساس مجاسات فنی انجام می شود.

4- در قسمت انتهایی ستون باید حتما از ورق با طول برابر عرض ستون استفاده شود تا علاوه بر تویت پایه،محل مناسبی برای اتصال بادبندهای فلزی به ستون به وجود آید.

5- در محل اتصال تیر یا پل به ستون لازم است قبلا ورق تقویتی به ابعاد کافی روی بالهای ستون جوش شده باشد.

ستون هابا مقاطع دایره ای:

 معمولا مقاطع لوله ای از قطر 2 تا 12 اینچ برا ستونها بیشتر مورد استفاده قرار می گیرد.مقطع لوله د رمواقعی که ویله اتصال جوش باشد،آسانتر به کار میرود.

کاربرد لوله بیشتر در پایه های بعضی منابع هوایی،دکلها و خرپا ساری ها ی سبک است.این مقطع ها به طور کلی مقاومترند،برای اینکه ممان اینرسی آنها در تمام جهات یکسان است با تغییر ضخامت لوله می توان اینرسیهای مختلفی بدست آورد.

 روش نصب نبشی بر روی کف ستونها برای استقرار ستون:

هنگام محاسبه ابعاد کف ستون ها باید حداقل فاصله میله مهاری از لبه کف ستون ومحل جاگذاری نبشی با ضخامت جوش لازم برای نگه داشتن ستون،همچنین پلیت انتهایی  ستون وابعاد ستون را با دقت برسی کرد,سپس با توجه به موارد یاد شده  به نصب نبشی و استقرار ستون به این صورت اقدام نمود.

 بر روی بیس پلیت ها محل کف ستون و محل آکس ستون را کنترل می کنیم .سپس نبشی های اتصال را به صورت عمود بر هم بر روی بیس پلیت ها جوش داده،آنگاه ستون را مستقر و اقدام به نصب دیگر نبشی های لازم کرده و آنها را به بیس پلیت جوش می دهیم.

از مزایای عمود بر هم بودن دو نبشی روی بیس پلیت  علاوه بر سرعت عمل واسقرار بهتر به علت تماس مستقیم ستون با بال نبشی،اتصال جوشکاری به گونه ای درست تر واصولی تر صورت می گیرد.

روشن است که قبل از جوشکاری باید ستون ها را هم محور وقایم نمود وعمود بودن در دو جهت کنترل کرد.پس از نصب ستون ها با توجه به ارتفاع ستون وآزاد بودن سر ستون ممکن است تا زمان نصب پلها ستونها در اثر شدت باد و وزن خود حرکت هایی داشته باشند که احتمالا تاثیر نامطلوب و یجاد ضعف در جوشکاری و اتصالات کف ستون ها خواهد داشت.به این سبب،باید پس از نصب،فورا به مهار بندی موقت  ستونها به وسیله میلگرد یا نبشی به صورت ضربدری اقدام نمود.

*** متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است ***


دانلود با لینک مستقیم


دانلود مقاله کامل درباره مفهوم ستون فلزی

آموزش کامل و حرفه ای طراحی سایت HTML5-CSS3-JQuery

اختصاصی از فی توو آموزش کامل و حرفه ای طراحی سایت HTML5-CSS3-JQuery دانلود با لینک مستقیم و پر سرعت .

آموزش کامل و حرفه ای طراحی سایت HTML5-CSS3-JQuery


آموزش کامل و حرفه ای طراحی سایت HTML5-CSS3-JQuery

با ظهور CSS نسخه ۳ و html نسخه ۵ انقلابی در طراحی وب سایت صورت گرفته است. البته این انقلاب را ما بصورت کامل مشاهده نکرده ایم و دلیل ان هم مرورگرهایی است که هنوز این تغییرات و ویرایش های جدید را ساپورت نمیکنند و مسلما نیاز به زمان زیادی است تا بتوان وب سایتهای مبتنی بر CSS 3 و html نسخه ۵ را در دنیای مجازی به راحتی مشاهده کرد. اما شما بعنوان یک طراح وب سایت باید خود را آماده این تغییرات نمایید تا در صورت ورود به فاز جدید از قافله عقب نمایند.توسعه CSS 3 به سمت قطعه بندی کردن یا بعبارت دیگر ماژول بندی کردن کدها مورد استفاده قرار می گیرد ویرایش های قبلی css کد ها خیلی طولانی و برخی مواقع دست و پا گیر می شدند بنابراین قطعه بندی کردن کدها کمک زیادی به ساده سازی آنها در CSS 3 نموده است.ماژول های اصلی و کوچک شده ای که در css3 بیشتر مورد استفاده قرار می گیرند.

 


دانلود با لینک مستقیم


آموزش کامل و حرفه ای طراحی سایت HTML5-CSS3-JQuery

دانلود مقاله کامل درباره صنایع غذایی (کاربرد استخراج با سیال فوق بحرانی در صنایع غذایی)

اختصاصی از فی توو دانلود مقاله کامل درباره صنایع غذایی (کاربرد استخراج با سیال فوق بحرانی در صنایع غذایی) دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کامل درباره صنایع غذایی (کاربرد استخراج با سیال فوق بحرانی در صنایع غذایی)


دانلود مقاله کامل درباره صنایع غذایی (کاربرد استخراج با سیال فوق بحرانی در صنایع غذایی)

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :87

 

بخشی از متن مقاله

مقدمه:

استخراج با حلال یکی از قدیمی‌ترین روش‌های جداسازی بوده و بدون شک تاریخ استفاده از آن به قبل از میلاد برمی‌گردد. علم استخراج با حلال در طی مدت زمان طولانی، توسعه یافته است و بیشترین پیشرفت در مورد حلالها و سیالهای مورد استفاده در فرآیندهای استخراج بوده است. روش‌های استخراجی نظیر، سونیکیشن1، سوکسله2، استخراج با فاز جامد[1] و استخراج مایع-مایع[2] که مدتها پیش ابداع شده‌اند امروزه نیز به همان صورت قبلی جهت تهیه نمونه بکار می‌روند. بعلاوه، روش‌های استخراج با حلالهای مایع نظیر سوکسله دارای محدودیت‌های مختلفی همچون آلودگی محیط زیست بدلیل وجود حلالهای دورریز، بازگیری ناقص نمونه‌ها، وقت گیر بودن فرآیند، مصرف زیاد حلال و... هستند. بدین‌ترتیب، محققان به فکر ابداع روش جدید استخراجی افتادند که علاوه بر‌اینکه معایب فوق را نداشته باشد بلکه دارای مزایای چندی نیز باشند. یکی از‌این روش‌ها، استخراج با سیال فوق بحرانی3 (SFE) است که مزیت‌های بسیاری دارد که از مهمترین آنها می‌توانیم به کاهش زمان استخراج و عدم آلودگی محیط زیست اشاره کرد.

فصل اول

استخراج با سیال فوق بحرانی


1-1- تاریخچه

هوگارت1 و‌هانی2 در سال 1879 خواص بی نظیر سیال فوق بحرانی اتانول و تتراکلریدکربن را توضیح دادند. آنها دریافتند که حلالیت‌هالیدهای فلزی در‌این دو سیال خیلی بالاست. در سال 1906 بوخنر3 اعلام کرد که حلالیت مواد آلی غیرفرار در دی اکسید کربن فوق بحرانی ده برابر مقداری است که از مطالعات فشار بخار انتظار می‌رفت. در سال 1958 زهوز4 و همکارانش استخراج لانولین از پشمهای روغنی با CO2 فوق بحرانی را گزارش کردند. نقطه شروع استفاده از سیالهای فوق بحرانی در فرآیندهای صنعتی از کار زوسل5 در انیستیتوی ماکس پلانک در مطالعه زغال سنگ آغاز شد. امروزه‌این سیالها کاربرد فراوانی در اغلب صنایع پیدا کرده‌اند. با‌این حال استفاده از SFE به عنوان یک تکنیک تجزیه‌ای تا دهه 1980 به تأخیر افتاد. در سال 1976 استال6 و شیلز7  سیستم استخراجی میکرو را به همراه کروماتوگرافی لایه نازک به کار بردند. از‌این سال به بعد SFE در حد تجزیه‌ای رشد سریعی کرد به طوری که امروزه‌این سیستم به صورت پیوسته یا ناپیوسته با سیستم‌های کروماتوگرافی گازی، کروماتوگرافی مایع با کارایی بالا و کروماتوگرافی با سیال فوق بحرانی کاربرد وسیعی در آنالیز انواع نمونه‌ها پیدا کرده است بطوریکه در سالهای 1990-1992 بیش از یکصد مقاله در‌این زمینه ارائه شده است.

1-2- خصوصیات و مزایای یک سیال فوق بحرانی

هر ماده‌ای را که در دما و فشاری بالاتر از دما و فشار بحرانی اش قرار گیرد، سیال فوق بحرانی گویند. شکل (1-1) نمودار فاز ساده‌ای است که نقطه بحرانی و ناحیه فوق بحرانی را نشان می‌دهد.

یک سیال فوق بحرانی خصوصیاتی مابین خصوصیات یک گاز و مایع را داراست. آنچه باعث شده تا سیال فوق بحرانی برای استخراج مورد استفاده و توجه قرار گیرد خصوصیات فیزیکی آن است. همانطوریکه در جدول (1-1) مشاهده می‌شود چگالی سیال فوق بحرانی تقریباً هزار برابر چگالی حالت گازی می‌باشد، بهمین دلیل قدرت حل کنندگی سیال فوق بحرانی بیشتر از گازها و مشابه مایعات است. از طرفی، سیال فوق بحرانی دارای نفوذپذیری زیادتر و ویسکوزیته کمتر نسبت به حلالهای مایع است، ‌این دو عامل انتقال جرم را کنترل می‌کنند و باعث می‌شود تا SFE خیلی سریع عمل کند.

1- دما و فشار فوق بحرانی پائینی داشته باشد.

2-از نظر سلامتی برای انسان خطرناک نباشد، یعنی آتشگیر و سمی‌نباشد.

3-از نظر شیمیایی بی اثر باشد و درجه خلوص آن بالا بوده و ارزان باشد.

چرا CO2 به عنوان حلال عمومی در استخراج به روش سیال فوق بحرانی انتخاب شده است؟

بهترین حلال برای SFE در استخراج‌ترکیبات طبیعی(غذاها و داروها) CO2 است زیرا یک‌ترکیب خنثی، ارزان، در دسترس، بی بو، بی مزه، دوستدار طبیعت و حلال GRAS است. همچنین در ماده فرآیند SFE با CO2، حلال در ماده استخراج شده باقی نمی‌ماند زیرا که‌این ماده در شرایط طبیعی به صورت گاز می‌باشد. علاوه بر‌این، دمای بحرانی آن است که برای مواد حساس به حرارت شرایط‌ایده آلی را بوجود می‌آورد و به خاطر گرمای نهان پایین آن، انرژی کمی برای جداسازی آن از ماده استخراجی لازم است. نکته دیگر آنکه، انرژی مورد نیاز برای بدست آوردن حالت فوق بحرانی CO2اغلب کمتر از انرژی مورد نیاز برای تقطیر حلالهای آلی تجارتی است. در کل قابلیت استخراج‌ترکیبات با CO2فوق بحرانی بستگی به وجود گروه‌های عاملی ویژه در‌این‌ترکیبات، وزن ملکولی و قطبیت آنها دارد.

برای مثال هیدروکربن‌ها و دیگر‌ترکیبات آلی با قطبیت نسبتاً پائین مثل استرها، اترها، آلدئیدها، لاکتون‌ها، کتون‌ها و اپوکسیدها در CO2 فوق بحرانی با فشار کمتر (100-75بار) قابل استخراج هستند در حالیکه‌ترکیبات با قطبیت بالا نظیر آنهائیکه یک گروه کربوکسیلیک و سه گروه هیدروکسیل و یا بیشتر دارند به ندرت در آن محلول هستند.

برای استخراج دسته خاصی از محصولات از یک حلال کمکی کمک می‌گیرند که موجب افزایش قطبیت CO2 فوق بحرانی می‌گردد. اتانول، اتیل استات و آب بهترین حلالهای کمکی برای استخراج‌ترکیبات غذایی هستند.  CO2تجارتی مورد نیاز برای فرآیند  SFEرا تقریباً می‌توان از سیستم‌های محیط زیستی بدست‌آورد. بعنوان مثال می توان از محصول جانبی صنایع تخمیر یا صنعت کود حیوانی، در استخراج استفاده کرد. بنابراین، استفاده از‌این CO2میزان CO2موجود در جو را افزایش نخواهد داد.

1-3- طرح فرآیندهای سیستم استخراج با CO2 :

در شکل 1-2 و 1-3 شماتیک فرآیند استخراج CO2 فوق بحرانی نشان داده  شده است که از مراحل اصلی زیر تشکیل شده است:

1-مرحله استخراج          2-مرحله انبساط           3-مرحله مشروط سازی حلال

همچنین 4جزء  دیگر عبارتند از:

1- ظرف استخراج با فشار بالا     2-شیر کاهنده (Term) فشار   3-جداکننده کاهنده (Term)فشار       و 4- پمپ افزاینده فشار حلال بازیافت شده.

همچنین دیگر تجهیزات ضروری شامل: مبدلهای حرارتی، کندانسور، ظرف‌های ذخیره سازی، منبع تامین کننده حلال و خوراک می باشد. خوراک معمولاً به شکل خرد شده است که در ظرف استخراج گذاشته می‌شود و CO2با فشار 350-100بار به داخل ظرف ظرف استخراج تزریق می‌شود. عصاره حاوی CO2از طریق یک فشار شکننده فشار به جداکننده که حاوی فشار 120-50بار است فرستاده می‌شود با کاهش فشار، دما و عصاره ته نشین می‌گردد در حالیکه CO2فاقد عصاره به ظرف استخراج برگردانده می‌شود.

SFEبرای خوراک جامد یک فرآیند نیمه مداوم است به‌این صورت که جریان    بصورت مداوم است ولی جریان نیمه پیوسته شدن ظرف استخراج از خوراک به صورت نیمه مداوم یا بچ است برای‌ایجاد جریان نیمه پیوسته در ظرف استخراجها از چند ظرف استخراج بهره می‌گیریم که به نوبت پر و خالی می‌شوند.

1-4 اصول و پایه فاز تعادلی و سیستم‌های بحرانی:

در‌این بخش مهمترین مسائل ترمودینامیکی است بحث می‌شود، ‌این مبحث در سیستم‌های فوق بحرانی بسیار گسترده و مهم می‌باشد اما بدلیل‌اینکه در‌این مجموعه سعی شده تا کاربرد‌این سیستم در استخراج مواد غذایی مورد بحث وبررسی قرار گیرد و بدلیل‌اینکه پایه اصلی دانشجویان مرتبط با رشته صنایع غذایی‌ترمودینامیک نمی‌باشد‌این مبحث به طور خلاصه آورده می‌شود.

برای فهم بهتر فرآیند SFE بایستی به پارامترهای مرتبط به فرآیند توجه ویژه‌ای مبذول داشت. به منظور انتخاب پارامترهای فرآیند، طراحی سیستم‌های عملیاتی و بهینه سازی سیستم SFE، دانش و بینش درباره رفتار تعالی فازها و تعادلی و‌ایجاد داده‌های تعادلی فازها نظیر انتخابی بودن مواد قابل استخراج در حلال فوق بحرانی در شرایط جداسازی و استخراج لازم است.

*** متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است ***


دانلود با لینک مستقیم


دانلود مقاله کامل درباره صنایع غذایی (کاربرد استخراج با سیال فوق بحرانی در صنایع غذایی)

دانلود مقاله کامل درباره صنعت کامپوزیت

اختصاصی از فی توو دانلود مقاله کامل درباره صنعت کامپوزیت دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کامل درباره صنعت کامپوزیت


دانلود مقاله کامل درباره صنعت کامپوزیت

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :124

 

فهرست مطالب :

عنوان                                                             صفحه

1- فصل اول: مقدمه ................................ 1

2- فصل دوم: مروری بر منابع ....................... 4

1-2- کامپوزیت های دارای ذرات ریز ................. 5

1-1-2- خواص کامپوزیت های ذره ای ................... 9

 2-1-2- انواع کامپوزیت های ذره ای از لحاظ جنس تقویت کننده 9

2-2- کامپوزیت های تقویت شده با الیاف ............. 11

1-2-2- خواص کامپوزیت های تقویت شده با الیاف ....... 13

2-2-2- خصوصیات کامپوزیت های تقویت شده ............. 15

3-2- مختصر در مورد آلومینیوم ..................... 24

4-2- سرامیک های پیشرفته .......................... 26

5-2- توضیحات مختصر در مورد آزمون مکانیکی ......... 27

1-5-2- آزمون سختی ................................. 27

2-5-2- آزمون کشش................................... 29

2-5-3- آزمون تخلخل سنجی............................ 30

 

3- فصل سوم: روش انجام آزمایش ..................... 32

 

4- فصل چهارم: تحلیل نتایج ........................ 50

1-4- نتایج حاصل از آزمون نونه AX ................. 52

2-4- نتایج حاصل از آزمون نونه BX ................. 54

3-4- نتایج حاصل از آزمون نونه CX.................. 56

4-4- نتایج حاصل از آزمون نونه DX ................. 58

5-4- نتایج حاصل از آزمون نونه EX.................. 60

6-4- نتایج حاصل از آزمون نونه AY ................. 62

7-4- نتایج حاصل از آزمون نونه BY.................. 64

8-4- نتایج حاصل از آزمون نونه CY.................. 66

9-4- نتایج حاصل از آزمون نونه DY ................. 68

10-4- نتایج حاصل از آزمون نونه EY................. 70

11-4- نتایج حاصل از آزمون نونه AZ ................ 72

12-4- نتایج حاصل از آزمون نونه BZ ................. 74

13-4- نتایج حاصل از آزمون نونه CZ.................. 76

14-4- نتایج حاصل از آزمون نونه DZ................. 78

15-4- نتایج حاصل از آزمون نونه EZ.................. 80

 

5- فصل پنجم: تفسیر نتایج.......................... 100

نتیجه گیری........................................ 109

پیشنهادات......................................... 110

منابع............................................. 111

 

فهرست شکل ها

عنوان ...............................                   ............. صفحه

2-1- فرم های مختلف ساختارهای کامپوزیت ............ 5

2-2- فرآیند ریخته گری کامپوزیت ................... 12

2-3- نمایش تنش کششی و برشی ....................... 15

2-4- ساختار کامپوزیت لایه ای ...................... 19

2-5- کامپوزیت تقویت کننده شده با الیاف ........... 19

2-6- نمونه آزمون کشش ............................. 30

3-1- نمونه آزمون کشش ............................. 47

4-1- ساختار AX ................................... 53

4-2- ساختار BX ................................... 55

4-3- ساختار CX ................................... 57

4-4- ساختار DX ................................... 59

4-5- ساختار EX ................................... 61

4-6- ساختارAY .................................... 63

4-7- ساختارBY .................................... 65

4-8- ساختارCY .................................... 67

4-9- ساختارDY .................................... 69

4-10- ساختار EY .................................. 71

4-11- ساختار AZ .................................. 73

4-12- ساختارBZ .................................... 75

4-13- ساختار CZ ................................... 77

4-14- ساختار DZ .................................. 79

4-15- ساختارEZ .................................... 81

 

فهرست نمودارها

عنوان............................................. صفحه

 2-1- مقایسه بین استحکام تسیلم ................... 7

2-2- تأثیر خاک رس برخواص.......................... 11

2-3- نمودار تنش – کرنش............................ 14

2-4- ازدیاد طول شیشه ............................. 16

4-1- نمودار کشش AX ............................... 52

4-2- نمودار کشش BX ............................... 54

4-3- نمودار کشش CX ............................... 56

4-4- نمودار کشش DX ............................... 58

4-5- نمودار کشش EX ............................... 60

4-6- نمودار کشش AY ............................... 62

4-7- نمودار کشش BY................................ 64

4-8- نمودار کششCY ................................ 66

4-9- نمودار کششDY ................................ 68

4-10- نمودار کششEY ............................... 70

4-11- نمودار کشش AZ............................... 72

4-12- نمودار کششBZ ................................ 74

4-13- نمودار کششCZ ................................ 76

4-14- نمودار کششDZ ............................... 78

4-15- نمودار کشش EZ................................ 80

4-16- منحنی بر حسب SiC  در سرعت 400................. 82

4-17- منحنی بر حسب SiC  در سرعت 800................. 84

4-18- منحنی بر حسب SiC  در سرعت 1200................ 86

4-19- تنش بر حسب SiC  در سرعت 400................... 88

4-20- تنش بر حسب SiC  در سرعت 800................... 90

4-21- تنش بر حسب SiC  در سرعت 1200.................. 92

4-22- انرژی بر حسب SiC  در سرعت 400................. 94

4-23- انرژی بر حسب SiC  در سرعت 800................. 96

4-24- انرژی بر حسب SiC  در سرعت 1200................ 98

 

 

 

فهرست جداول

عنوان............................................. صفحه

 2-1- مثالها و کاربردهای کامپوزیت ................ 8

2-2- خواص الیاف .................................. 22

2-3- تأثیر مکانیزم های استحکام بخش در آلومینیوم .. 25

2-4- خواص سرامیک ها .............................. 27

4-1- درصد وزنی SiC ................................ 50

4-2- سرعت همزن ................................... 51

4-3- سختی نمونه AX ............................... 53

4-4- سختی نمونه BX ............................... 55

4-5- سختی نمونه CX................................ 57

4-6- سختی نمونه DX................................ 59

4-7- سختی نمونه EX................................ 61

4-8- سختی نمونه AY................................ 63

4-9- سختی نمونه BY................................ 65

4-10- سختی نمونه CY............................... 67

4-11- سختی نمونه DY............................... 69

4-12- سختی نمونه EY............................... 71

4-13- سختی نمونه AZ............................... 73

4-14- سختی نمونه BZ................................ 75

4-15- سختی نمونه CZ................................ 77

4-16- سختی نمونه DZ............................... 79

4-17- سختی نمونه EZ................................ 81

4-18- سختی بر حسب SiC سرعت 400 ..................... 82

4-19- بیشترین و کمترین سختی سرعت 400 .............. 83

4-20- تغییرات سختی................................. 83

4-21- سختی بر حسب SiC سرعت 800 ..................... 84

4-22- بیشترین و کمترین سختی سرعت 800 .............. 85

4-23- تغییرات سختی................................. 85

4-24- سختی بر حسب SiC سرعت 1200 .................... 86

4-25- درصد تغییرات سختی............................ 87

4-26- تنش شکست بر حسب SiC سرعت 400 ................. 88

4-27- بیشترین و کمترین تنش سرعت 400 ............... 89

4-28- تغییرات تنش سرعت 400 ........................ 89

4-29- تنش بر حسب درصد SiC سرعت 800 ................. 90

4-30- بیشترین و کمترین تنش ........................ 91

4-31- تغییرات تنش سرعت 800......................... 91

4-32- تنش بر حسب درصد SiC سرعت 1200 ................ 92

4-33- بیشترین و کمترین تنش......................... 93

4-34- تغییرات تنش سرعت 1200........................ 93

4-35- انرژی بر حسب SiC سرعت 400 .................... 94

4-36- بیشترین و کمترین تنش......................... 95

4-37- تغییرات تنش سرعت 400 ........................ 95

4-38- انرژی بر حسب SiC سرعت 800 .................... 96

4-39- بیشترین و کمترین تنش......................... 97

4-40- درصد تغیرات انرژی سرعت 800................... 97

4-41- انرژی بر حسب SiC سرعت 1200 ................... 98

4-42- بیشترین و کمترین تنش......................... 99

4-43- تغییرات انرژی سرعت 1200...................... 99


 چکیده

مواد مرکب به خاطر داشتن وزن سبک ، همچنین حجمی مساوی با حجم آلیاژهای دیگر و خواص مکانیکی منحصر به فردی که ارائه می کنند در دهه های اخیر بسیار مورد توجه قرار گرفته اند. از این مواد بیشتر در سازه های فضای  و صنایع هوایی استفاده می شود. مواد مرکب از دو جزء اصلی تشکیل شده اند: 1- فلز پایه 2- عامل تقویت کننده

بصورت کلی از فلزات با وزن کم به عنوان فلز پایه و همچنین از مواد سرامیکی به عنوان تقویت کننده استفاده می شود از مهمترین و معروفترین مواد مرکب می توان به ماده مرکب با زمینه آلومینیومی و تقویت کننده ذره ای کاربیدسیلیکون اشاره کرد آلومینیوم و کاربیدسیلیکون به علت نزدیک بودن دانسیت هایشان به یکدیگر می توانند خصوصیات عالی مکانیکی را در وزن کم بوجود بیاورند در این تحقیق نحوه ساخت این ماده مرکب از روش ریخته گری در قالب فلزی مورد بررسی قرار می گیرد و تأثیر دو فاکتور مختلف ، یک درصد وزنی تقویت کننده و دیگری سرعت هم زدن مخلوط مذاب بر روی خواص مکانیکی از جمله سختی و استحکام مورد بحث و بررسی قرار می گیرد نتایج حاصل شده به ما نشان می دهد که با اضافه کردن مواد سرامیکی به فلز پایه تغییرات ای در رفتار مکانیکی فلز پایه ایجاد می شود که در این پایان نامه به تفصیل به بررسی این رفتار می پردازیم .

فصل اول:

مقدمه

استفاده از مواد کامپوزیت طبیعی، بخشی از تکنولوژی بشر از زمانی که اولین بناهای باستانی، کاه را برای تقویت کردن آجرهای گلی به کار بردند بوده است. مغولهای قرن دوازدهم، سلاح های پیشرفته ای را نسبت به زمان خودشان با تیر و کمان هایی که کوچکتر و قوی تر از دیگر وسایل مشابه بودند ساختند. این کمانها سازه های کامپوزینی ای بودند که به وسیله ترکیب زردپی احشام (تاندون)، شاخ، خیزران (بامبو) و ابریشم ساخته شده بودند که با کلوفون طبیعی[1] پیچیده می شد.این طراحان سلاح های قرن دوازدهم، دقیقاً اصول طراحی کامپوزیت را می فهمیدند. اخیراً بعضی از این قطعات موزه ای 700 ساله کشیده و آزمون شدند. آنها از نظر قدرت حدود %80 کمانهای کامپوزیتی مدرن بودند. در اواخر دهه 1800، سازندگان کانو قایق های باریک و بدون بادبان و سکان، تجربه می کردند که با چسباندن لایه های کاغذ محکم کرافت[2]  با نوعی لاک به نام شلاک[3]، لایه گذاری کاغذی را تشکیل می دهند. در حالی که ایده کلی موفق بود، ولی مواد به خوبی کار نمی کردند. چون مواد در دسترس، ترقی نکرد، این ایده محو شد. در سالهای بین 1870 تا 1890 انقلابی در شیمی به وقوع پیوست. اولین رزین های مصنوعی (ساخت بشر) توسعه یافت به طوری که
می توانست به وسیله پلیمریزاسیون از حالت مایع به جامد تبدیل شود. این رزین های پلیمری از حالت مایع به حالت جامد توسط پیوند متقاطع مولکولی تبدیل می شوند. رزین های مصنوعی اولیه شامل، سلولوئید، ملامین و باکلیت[4] بودند.در اوایل دهه 1930 دو شرکت شیمیایی که روی توسعه رزین های پلیمری فعالیت می کردند، عبارت بودند از '' American Cyanamid '' و '' Dupont '' .

در مسیر آزمایشاتشان هر دو شرکت به طور مستقل و در یک زمان به فرمول ساخت رزین پلی استر دست یافتند. هم زمان، شرکت شیشه '' Owens – lllinois '' شروع به ساخت الیاف شیشه به همان صورت بنیادی بافت پارچه های نساجی نمود. در طی سال های 1943 و 1936 محققی به نام '' Ray Green '' در اوهایو این دو محصول جدید را ترکیب کرد و شروع به قالب گیری قایق های کوچک نمود. این زمان را شروع کامپوزیت های مدرن می شناسند. در حین جنگ جهانی دوم، توسعه رادار به محفظه های غیر فلزی نیاز پیدا کرد و ارتش آمریکا با تعداد زیادی پروژه های تحقیقاتی، تکنولوژی نوپای کامپوزیت ها را توسعه بخشید. فوراً، به دنبال جنگ جهانی دوم، کامپوزیت به عنوان یک ماده مهندسی اصلی پدیدار شد. صنعت کامپوزیت در اواخر دهه 1940 با علاقه شدید به آن شروع شد و به سرعت در دهه 1950 توسعه یافت. بیشتر روش های امروزی قالبگیری و فرایند انجام کار روی کامپوزیت ها در سال 1955 گسترش یافت. قالبگیری باز (لایه گذاری دستی)، قالبگیری فشاری، استفاده از پاشش الیاف سوزنی، قالبگیری به روش انتقال رزین، روش فیلامنت وایندینگ، استفاده از کیسه خلاء و روش پاشش در خلاء همگی بین سالهای 1946 و 1955 توسعه یافتند و در تولید استفاده شدند. محصولات ساخته شده از کامپوزیت ها در طی این دوره شامل این موارد بودند: قایق ها، بدنه
اتومبیل ها، قطعات کامیون ها، قطعات هواپیماها، مخازن ذخیره زیر زمینی، ساختمان ها و بسیاری دیگر از محصولات مشابه.

امروزه صنعت کامپوزیت به رشد خود ادامه می دهد چرا که به دنبال افزایش قدرت، سبکی، دوام و زیبایی محصولات می باشیم.

*** متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است ***


دانلود با لینک مستقیم


دانلود مقاله کامل درباره صنعت کامپوزیت

دانلود مقاله کامل درباره انواع نانوکامپوزیت ها و کاربرد آنها در صنایع هوا و فضا

اختصاصی از فی توو دانلود مقاله کامل درباره انواع نانوکامپوزیت ها و کاربرد آنها در صنایع هوا و فضا دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله کامل درباره انواع نانوکامپوزیت ها و کاربرد آنها در صنایع هوا و فضا


دانلود مقاله کامل درباره انواع نانوکامپوزیت ها و کاربرد آنها در صنایع هوا و فضا

 

 

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل: Word (قابل ویرایش و آماده پرینت)

تعداد صفحه :60

 

بخشی از متن مقاله

مقدمه

رشته مواد نانو کامپوزیت توجه دانشمندان و مهندسان را در سالهای اخیر به خود جلب کرده است. نتایج بررسی استفاده از بلوکهای ساختمانی در ابعاد نانو, طراحی و ایجاد مواد جدید با انعطاف پذیری و پیشرفتهای زیاد در خواص فیزیکی آنها را ممکن می سازد. قابلیت ارتقاء کامپوزیت ها با استفاده از بلوکهای ساختمانی با گونه های شیمیایی ناهمگن در رشته ها و بخش های مختلف علمی مطرح گردیده است. ساده ترین مثالها از چنین طراحی هایی, به صورت طبیعی در استخوان اتفاق
می افتد که یک نانوکامپوزیت ساخته شده از قرص های سرامیکی و چسبهای آلی می باشد. بدلیل این که اجزاء سازنده یک نانو کامپوزیت دارای ساختارها و ترکیبات مختلف و خواص مربوط به آنها
 می باشد، کاربردهای زیادی را ارائه می دهند. از اینرو موادی که از آنها تولید می شوند, می توانند چند کاره باشند. با الگو گرفتن از طبیعت و براساس نیازهای تکنولوژی های پدید آمده در تولید مواد جدید با کاربردهای مختلف در آن واحد برای مصارف گوناگون, دانشمندان استراتژی های ترکیبی زیادی را برای تولید نانو کامپوزیت ها بکار برده اند. این استراتژی ها دارای مزایای آشکاری در تولید مواد دانه درشت مشابه می باشند. نیروی محرکه در تولید نانو کامپوزیت ها, این واقعیت است که آنها خواص جدیدی در مقایسه با مواد رایج ارائه  می دهند.

تصمیم برای بهبود خواص و پیشرفت ویژگی های مواد از طریق ایجاد نانو کامپوزیت های چند فازی مسئله جدیدی نیست. این نظریه از زمان آغاز تمدن و بشریت و با تولید مواد برای کارآمدی بیشتر برای اهداف کاربردی مورد نظر بوده است. علاوه بر تنوع وسیع نانو کامپوزیت های یافت شده در طبیعت و موجودات (مثل استخوان) , یک مثال عالی برای کاربرد نانو کامپوزیت های ترکیبی در روزگار باستان, کشف جدید ساختمان نقاشی های مایان می باشد که در دوران مسا مریکاس[1] بوجود آمدند. توصیف حالت هنر از این نمونه های نقاشی آشکار می سازد که ساختار رنگها, متشکل از ماتریسی از خاک رس آمیخته شده با مولکولهای رنگی آلی می باشد. آنها همچنین محتوی ناخالصی های ذرات نانوی فلزی محفوظ در یک لایه سیلیکاتی بی شکل همراه با ذرات نانوی اکسیدی روی لایه می باشند . این ذرات نانو تحت عملیات حرارتی و از ناخالص بوجود می آیند (Cr , Mn , Fe) که در مواد خام مثل خاک رس موجود می باشند ولی جمع و سایز آنها خصوصیات نوری رنگ نهائی را تحت تأثیر قرار می دهد. ترکیبی از خاک رس موجود که یک سوپر لاتیک می سازد که در ارتباط با ذرات نانوی فلزات و اکسیدی پشتیبانی شده روی لایه آمورف می باشدو این رنگ را یکی از اولین مواد مرکب مشابه نانو کامپوزیت های کاربردی مدرن می سازد.  

نانو کامپوزیت ها را می توان ساختارهای جامدی فرض کرد که دارای خواص مکرر بعدی با اندازه نانومتری بین فازهای مختلف سازنده ساختار می باشند. این مواد متشکل از یک جامد غیرآلی (بستر یا میزبان) محتوی یک جزء آلی و یا بالعکس می باشند و یا می توانند متشکل از دو یا چند فاز آلی  / غیرآلی در چند فرم ترکیبی باشند با این محدودیت که حداقل یکی از فازها یا ترکیبات, در ابعاد نانو باشد.

 

مثالهایی از نانو کامپوزیت عبارتند از پوششهای متخلخل, ژل ها و ترکیبی از پلیمرها, مثل ترکیبی از فازهای با ابعاد نانو با تفاوتهای فاحش در ساختار, ترکیب و خواص می توان فازهای با ساختار نانوی موجود در نانو کامپوزیت ها را صفر بعدی (مثل خوشه های اتمی تشکیل شده), تک بعدی (یک بعدی مثل نانوتیوپ ها) و دو بعدی (پوشش های با ضخامت نانو) و سه بعدی (شبکه های جاسازی شده) در کل مواد نانو کامپوزیت می توانند دارای خواص مکانیکی, الکتریکی, الکتریکی, نوری, الکتروشیمی, کریستالی و ساختاری باشند, نسبت به مواردی که دارای اجزاء واحد و یگانه هستند. رفتار چند کاره برای هر ویژگی بخصوص ماده اغلب بیش از مجموع اجزاء تکی می باشد.

هر دو روش پیچیده و ساده برای ساختن ساختارهای نانو کامپوزیت وجود دارد یک سیستم عملی نانو کامپوزیت دو فازی, مثل کاتالیزرهای پشتیبان مورد استفاده در کاتالیزر محرک (ذرات نانوی فلزی جای گرفته روی پشتیبان های سرامیکی), می توانند بسادگی با بخار دادن فلز روی لایه و یا پراکنده کردن توسط حلال شیمیایی آماده شوند. از طرف دیگر, ماده ای مثل استخوان که دارای ساختاری سلسله مراتبی با فازهای پلیمری و سرامیکی مرکب می باشد, با تکنیکهای ترکیبی حاضر, به سختی می تواند تکثیر شود.

جدا از ویژگی های اجزاء تکی در یک نانو کامپوزیت, اشتراک اجزاءبا یکدیگر در بهبود یا محدود کردن خواص کلی یک سیستم نقش مهمی بر عهده دارند.

با توجه به فصل مشترک زیاد و وسیع ساختارهای نانو, نانو کامپوزیت ها ارائه کننده فصل مشترک های زیادی بین فازهای ادغام شده تشکیل دهنده می باشند. خواص ویژه نانو کامپوزیت ها اغلب از اثر متقابل و تداخل فازهای آن در فصل مشترک ها حاصل می شوند. یک مثال عالی برای این مطلب, رفتار مکانیکی کامپوزیت های پلیمری پر شده با نانوتیوپ ها می باشد. هر چند افزودن نانوتیوپ ها می تواند امکان استحکام پذیری پلیمرها را افزایش دهد, یک فصل مشترک بدون تداخل فازها فقط برای بوجود آوردن مناطق ضعیف در کامپوزیت کارائی دارد و هیچ بهبودی در خواص مکانیکی آن بوجود نخواهد آمد. برخلاف مواد نانو کامپوزیت, فصل مشترک ها در کامپوزیت های موسوم, تشکیل دهنده یک شکستگی بسیار کوچکتر در فلزات بالک می باشد.  

ذکر این نکته حائز اهمیت است که تحقیقات در مورد کاربرد و روشهای تولید نانو کامپوزیت ها در طول دهه اخیر در بسیاری از کشورهای دنیا و در کشور ایران گسترش یافت و در دنیای پیششرفته کنونی باعث تکامل صنایع مختلف نظیر صنعت هوا و فضا  ،صنایع خودرو سازی و صنایع پزشکی و ... گریده است این پروژه در حال حاضر مروری بر سیستم های نانو کامپوزیت و نحوه فرایند تولید و خصوصیات و کاربردهای آنها دارد.

2-2- تاریخچه تولید کامپوزیت های زمینه فلزی

تولید MMCsبه سال1940 میلادی حین بهبود سرمت باز می گردد .در گذشته اجزای غیر فلزی (سرامیکی) داخل فلزات یا آلیاژها را به عنوان عواملی که باعث تخریب خواص مکانیکی از جمله استحکام و انعطاف پذیری می شود ، می دانستند . در اواسط دهه ی 60 نیکل پوشش داده شده توسط پودر گرافیت را به وسیله جریان گاز آرگون در مذابی از آلیاژ آلومینیوم وارد کردند. این سرآغاز تولید و بررسی کامپوزیت های زمینه فلزی بود و تحت نام MMPC معرفی شد . در سال 1968 در انجمن تکنولوژی هندوستان در کنپور ، شخصی به وسیله ی روش به هم زدن موجبات اتصال ذرات آلومین به آلومینیوم را فراهم نمود و باعث بوجود آمدن کامپوزیت های آلومینیوم – آلومین گردید . این اختراع تحت نام روش ریخته گری به هم زدنی نامیده شد[1].

 

در اوایل دهه ی هفتاد انجمن تکنولوژی ماساچوست روشی را به ثبت رساند که در آن اجزای غیر فلزی را در آلیاژهای شبه جامد در درجه حرارتی بین شالیدوس ولیکوئیدوس برای همان آلیاژ در مخلوط قرار می داد و تولیدکامپوزیت می کرد . در این پروسه تاخیر در تر شدن و دیر تر شدن ذرات باعث افزایش ویسکوزیته آلیاژ شبه جامد می شد . در دانشگاه رودکی یک ترتیب و نظمی برای فرو بردن ناخالصیها (ذرات) معرفی شد . این ترتیب و نظم به این شکل بود که ابتدا به وسیله به هم زدن ، مذاب و پارتکیل ها را به صورت دوغاب در آمده و نیازی به هم زدن تا انتهای کار نباشد. در روشهای پراکنده سازی ذرات و روش آلیاژهای شبه جامد می توان متد های گوناگونی را بکار برد اما مقدار ذرات مصرفی محدود می باشد چرا که دوغاب مذاب حاوی ذرات برای ریخته گری یک حداقل سیالیت را لازم دارد. بقیه ی روشهای تولید کامپوزیت زمینه فلزی را در این بخش به طور مختصر، و در فصل روش های تلفیق به طور کامل توضیح داده می شود. مهمترین حسن این گروه حفظ خواص در دمای بالا می باشد. از دیگر مزایا می توان به استحکام کششی نهایی بالا، مقاومت به ضربه بالا، توانایی آزاد سازی تنش (بدلیل قابلیت تغییر شکل پلاستیک) و مقاومت به خوردگی بالا اشاره کرد [1].

در تولید MMCs باید پارامترهای زیادی مد نظر قرار گیرند که مهمترین آن ها عبارتند از :

  • در انتخاب مواد باید دقت شود . با توجه به اینکه اغلب ، فاز دوم دارای جنس سرامیک می باشند و بیشتر سرامیک ها با فلزات واکنش می دهند و تولید ترکیبات بین فلزی[4] این مواد بسیار ترد و شکننده هستند و خواص را کاهش می دهند (البته باید در نظر داشت که واکنش باید انجام گیرد ).
  • چون هدف بدست آوردن یک ماده سبک است پس بیشترین کاربرد راMg ،Al تا حدودی و در بعضی موارد خواهند داشت[1] .

خیس شوندگی ذرات باید در نظر گرفته شود . زمینه باید قابلیت تر شوندگی سرامیک را داشته باشد

3-2- روش های تولید MMCs

1-3-2- روش ذوبی در تولید MMCs  

در روش های ذوبی فلز زمینه ذوب شده با فلز دوم ادغام می شود و کامپوزیت  تولید می گردد . مانند روش های گردابی ، نیمه جامد – نیمه مایع ، ریخته گری کوبشی ، پاشش همزمان ، درجا و...[1] .

 

1-1-3-2- روش گردابی یاVortex

در این روش یک همزن در داخل مذاب وجود دارد که عمل هم زدن را انجام می دهد . در  حین هم زدن فاز دوم (سرامیک ) از بالا وارد می شوند و مخلوطی از مذاب و سرامیک ایجاد می شود این مخلوط دوغاب کامپوزیتی نیز نامیده می شود . سپس از روش های مختلف ریخته گری می توان قطعات کامپوزیتی تولید کرد[1].

محاسن :

  • از نظر اقتصادی مقرون به صرفه است چون به تجهیزات پیچیده ای نیاز نمی باشد .
  • محدودیت در شکل و اندازه قطعات وجود ندارد.
  • اگر تخلیل در حد قابل قبول باشد نیاز به فرآیند ثانویه نمی باشد.
  • قابلیت بازیابی مجدد وجود دارد .

مشخصات روش گردابی :

  • انتخاب مواد اولیه: همه موارد انتخاب باید مد نظر قرار گیرد . همچنین چون زمان تماس مذاب با سرامیک نسبتاً طولانی است (درحین هم زدن و ریخته گری ) امکان تخریب سرامیک بدلیل واکنش مخرب وجود دارد ، پس باید در انتخاب مواد دقت کرد.
  • اختلاف(ضریب انبساط حرارتی ) زمینه و فاز دوم : چون از دمای بالا تولید می شوند این اختلاف سبب تشکیل دانسیته نابجایی در اطراف ذرات می شوند. در نتیجه ذره تحت فشار و زمینه تحت کشش می باشد . به این مسئله تطابق فیزیکی گویند این مسئله از لحاظ پیر سختی مفید است .
  • خیس شوندگی : باید مد نظر قرار گیرد . عدم خیس شوندگی عدم اختلاط را به همراه دارد. گاهی اوقات برای تکامل خیس شوندگی ذرات پیش گرم شوند . مانند SiCکه در 9000cبه مدت 1تا 3 ساعت حرارت می دهند . بدلیل :
  • از بین رفتن رطوبت و ناخالصی های سطحی که باعث می شود کلوخه ای شدن اتفاق نیفتد.
  • شیمی سطح تعویض می شود. با حرارت SiC2 تشکیل شده که باعث بهبود تر شوندگی می گردد[1].

 2-1-3-2- مخلوط سازی فاز دوم با مذاب

اولین مرحله جهت تولید کامپوزیت خوب توزیع ذرات فاز دوم در دوغاب است . در این مورد اکسیدهای سطحی را باید در نظر گرفت زیرا ایجاد مزاحمت می کنند . هم چنین برخورد بین ذرات نیز باید در نظر گرفته شود . مهمترین مسئله جهت توزیع ذوب هم زدن می باشد. جهت دستیابی به توزیع خوب در هم زدن ، همزن باید شرایط خاصی داشته باشد . همزن هم می تواند جریان شعاعی و هم می تواند جریان محوری ایجاد کند وجود هردو جریان با هم بهترین حالت خواهد بود[1] .

 جهت انجام بهینه هم زدن به پارامترهای زیر باید توجه کرد .

  • شکل و تعداد همزن .
  • سرعت چرخش همزن
  • اندازه همزن .
  • فاصله همزن از کف بوته.

 

3-1-3-2- ریخته گری کوبشی Squeeze Casting

آهنگری در حال مذاب هم نامیده می شود . این روش دو تفاوت اساسی با ریخته گری تحت فشار دارد که عبارتند از :

  • فشار در ریخته گری کوبش در دامنهMPa 55 تاMPa 200 می باشد ولی در ریخته گری تحت فشار حداکثرMPa 15 می باشد .
  • در روش کوبشی فشار با پایان انجماد ادامه دارد ولی در تحت فشار وقتی قالب پر می شود فشار قطع می شود .

به هر حال این روش در مقایسه با روش سنتی مزیت هایی دارد که عبارتند از :

  • به خاطر فشار زیاد می توان قطعات را نزدیک به شکل نهایی تولید کرد.
  • سرعت تولید بالاست .
  • قطعات تولیدی با این روش فاقد تخلخل گازی و انقباضی هستند زیرا :
  • به دلیل فشار زیاد نیازی به فوق گداز جهت سیالیست کافی نخواهیم داشت ، لذا جذب گاز کاهش می یابد.
  • چون تا پایان انجمادفشار ادامه دارد حفرات انقباضی کاهش می یابد.
  • بدلیل انتقال حرارت سریع فلز زود منجمد می شود و فرصتی برای جدایش ندارد .

 معایب ریخته گری کوبشی در کامپوزیت ها

  • فشار زیاد سبب تغییر شکل اولیه کامپوزیت می شوند. (شکلی از فاز دوم که آماده می شود ، درون قالب قرار می گیرد وسپس مذاب به داخل آن نفوذ داده می شود ) .
  • با توجه به اینکه باید موادی با انجماد پوسته ای انتخاب کنیم در محدوده انتخاب آلیاژ محدودیت داریم .
  • نیاز به تجهیزات پیچیده جهت اعمال فشار زیاد می باشد[1] .

4-1-3-2- کامپوزیت های درجا In-Situ Composites

به طور کلی کامپوزیت درجا به کامپوزیت هایی اطلاق می شود که فاز دوم در اثر واکنش هایی درون مذاب تشکیل می شود .

  • فاز دوم در اثر واکنش بین زمینه و یک عامل خارجی مثل گاز ، مایع و جامد صورت می گیرد
  • فاز دوم در اثر واکنش یوتکتیک در مذاب صورت می گیرد.

به عنوان مثال برای نوع اول کامپوزیت های درجا ، با وارد کردن گاز اکسیژن باعث تشکیل اکسید در مذاب به عنوان فاز دوم می شود . محاسن نوع اول کامپوزیت های درجا عبارتند از :

  • نیاز به فاز دوم به صورت الیاف یا ذرات نمی باشد .
  • مشکلات عدم خیس شوندگی وجود ندارد .
  • مسئله هم زدن نداریم .
  • توزیع یکنواخت می باشد .

در مورد نوع دوم اگر شرایط انجماد توسط شیب حرارتی(G)سرعت(R) رشد کنترل شود آلیاژ به صورت یوتکتیک یا کامپوزیت لایه ای و یا میله ای خواهد شد . محاسن نوع دوم کامپوزیت های درجا عبارتند از :

 

  • افزایش استحکام .
  • چسبندگی بیشتر ذرات .
  • عدم واکنش مخرب بین فاز دوم و زمینه .

و همچنین معایب کامپوزیت های درجا به شرح ذیل می باشد :

  • در اشکال پیچیده نمی توان انجماد جهت دار یا با جبهه مسطح داشت . پس مخصوص اشکال ساده می باشد .
  • باید آلیاژ کاملا خالص باشد . فاز خالص جلوی رشد مزدوج را می گیرد[1].

2-3-2- روشهای حالت جامد در تولید MMCs

در این روشها نیازی به ذوب کردن آلیاژ زمینه نمی باشد و در حالت جامد کامپوزیت سازی انجام
می شود.

1- روش اتصال دیفوزیونی : در این روش الیاف بین دو ورق زمینه تمیز کاری شده قرار می گیرد
( مانند ساندویچ ) سپس تحت فشار ، دما و زمان قرار می گیرد در نتیجه اتصال نفوذی بین لایه ها و فاز دوم بوجود می آید .

2- روش نورد

3- روش اکستروژن

4- روش متالورژی پودر : شبیه به متالوژی پودر سنتی می باشد با این تفاوت که به پودر فلز ، ذرات یا الیاف کوتاه سرامیکی اضافه می شود و محاسن متالورژی پودر به شرح ذیل است :

  • پیوند ذرات و زمینه خوب است .
  • توزیع خوب می باشد .
  • محدودیت در کسر حجمی ذرات نداریم[1] .

به طور کلی محاسن روش های حالت جامد عبارتند از :

  • نیاز به تجهیزات ذوب نمی باشد .
  • جدایش اتفاق نمی افتد .

3-3-2- تخلخل در کامپوزیت

تخلخل در کامپوزیت های زمینه فلزی بیشتری از آلیاژهای فلزی است . با افزایش کسر حجمی ذرات مقدار تخلخل افزایش می یابد . دلایل این امر عبارتند از :

  • در موقع هم زدن هوا و گازها وارد مذاب می شوند که به تخلخل تبدیل می شوند .
  • ذرات به همراه خود لایه هوارا وارد مذاب می کنند.
  • ذرات به عنوان مراکز جوانه زنی برای حلال های گازی عمل می کنند. هر چه زاویه تر شوندگی بین مذاب و ذره بیشتر باشد عمل جوانه زنی حباب هوا روی ذرات افزایش می یابد .
  • چون اغلب ویسکوزیته مذاب کامپوزیت بیشتر از ویسکوزیته آلیاژ می باشد عمل خروج گاز قبل از انجماد به کندی انجام می شود[1] .

4-2- خوردگی کامپوزیت ها

نسبت به مواد مونولیتیک ضعیف هستند. خوردگی را به دو دسته تقسیم می کنیم که عبارتند از :

  • حفره ای[5]
  • گالوانیک[6]

عامل اصلی برای خوردگی کامپوزیت ها خوردگی گالوانیک می باشد . به دلیل حضور دو فاز متجانس در کنار هم پیل تشکیل می شود . جهت خوردگی ابتدا حفره ای شدن اتفاق می افتد که باعث می شود ماده خورنده به فصل مشترک برسد در نتیجه پیل تشکیل می شود. حال اگر جلوی حفره ای شدن را بگیریم مانع از خوردگی کامپوزیت خواهیم شد . در صورتیکه در MMCs در دمای بالا کاربردی داشته باشند خوردگی ممکن است از نوع خوردگی داغ هم باشد که شامل اکسیداسیون و هم شامل گازهای خورنده می باشد . در خوردگی داغ ابتدا سطح قطعه خورده می شود و گازها خود را به فصل مشترک زمینه فاز دوم می رساند . به طور کلی دو عامل ممکن است اتفاق بیفتد :

  • ورود به فصل مشترک و خورده شدن .
  • ورود به فصل مشترک و تشکیل ترکیباتی که حجم بیشتری دارند که باعث ایجاد تنش می شود در نتیجه اتفاق می افتد .

*** متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است ***


دانلود با لینک مستقیم


دانلود مقاله کامل درباره انواع نانوکامپوزیت ها و کاربرد آنها در صنایع هوا و فضا