لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه24
فهرست مطالب
چکیده :
1- معرفی
2- کارهای مربوطه
شکل 1- چارچوب کاری NIDS ناهنجاری پیش نظارت نشده
3- تشخیص Outlier ها
الف – شرح چارچوب کاری
ب – الگوریتم جنگلهای تصادفی
ج – الگوهای استخراج سرویسهای شبکه
الف – مجموعه داده و پیش پردازش
ب- ارزیابی و تشریخ
تشخیص ناهنجاری (anomaly) موضوعی حیاتی در سیستم های تشخیص نفوذ به شبکه است (NIDS) [1] . بسیاری از NIDS های مبتنی بر ناهنجاری «الگوریتمهای پیش نظارت شده » [2] را بکار می گیرند که میزان کارایی این الگوریتمها بسیار وابسته به دادها های تمرینی عاری از خطا میباشد . این در حالی است که در محیط های واقعی و در شبکه های واقعی تهیه اینگونه داده ها بسیار مشکل است . علاوه بر اینها ، وقتی محیط شبکه یا سرویسها تغییر کند الگوهای ترافیک عادی هم تغییر خواهد کرد .
این مساله به بالا رفتن نرخ مثبت نمایی [3] در NIDS های پیش نظارت شده منجر می شود . تشخیص یک انحراف کامل (outlier) پیش نظارت نشده میتواند بر موانعی که در راه تشخیص ناهنجاری های پیش نظارت شده وجود دارد غلبه کند . به همین دلیل ما الگوریتم « جنگلهای تصادفی » [4] را که یکی از الگوریتمهای کار امد برای استخراج داده است به خدمت گرفته ایم و آن را در NIDS های مبتنی بر ناهنجاری اعمال کرده ایم . این الگوریتم میتواند بدون نیاز به داده های تمرینی عاری از خطا outlier ها را در مجموعه داده های [5] ترافیک شبکه تشخیص دهد . ما برای تشخیص نفوذهای ناهنجار به شبکه از یک چارچوب کاری استفاده کرده ایم و در این مقاله به شرح همین چارچوب
[1]- Network Intrusion Detection Systems
[2] - Unsupervised Algorithm
[3] - تشخیص اشتباه کی مورد به عنوان نفوذ غیر عادی ، که موجب می شود نرخ تشخیص ناهنجاری به صورت کاذب بالا رود
[4] - Random forests algorithm
[5] - dataset
تحقیق در مورد نفوذ غیر عادی در شبکه