فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلودمقاله چدن های پر آلیاژ

اختصاصی از فی توو دانلودمقاله چدن های پر آلیاژ دانلود با لینک مستقیم و پر سرعت .

 

 

 


مقدمه
نخستین خانواده چدنهای پر آلیاژ که بیشترین اهمیت را کسب کردند چدنهای نایهارد بودند با زمینه مارتنزینی، کاربیدی، کربن در آنها از 5/2% تا 6/3% متغیر می‌باشد. در این چدنها تشکیل عنصر اساسی است که به منظور به تعویق افتادن تشکیل پرلیت است و کاهش سرعت بحرانی سرد شدن در رنج 3/3% تا5/0 به کار می‌رود که نتیجتاً مارتزیت به همراه مقداری آستیت باقیمانده در زمینه ساختار به وجود می‌آید. کروم در رنج %5/3 – 4/1% اضافه می‌شود، برای حصول اطمینان از اینکه مازاد کربن آلیاژ به جرم کاربیدهای پایدار می‌سازد و همچنین از خاصیت گرافیت زایی نیکل نیز جلوگیری به عمل می‌آید. ترکیب کاربیدها به علاوه مارتنزیت زمینه‌ای با مقاومت سایشی خوبی ایجاد می‌کند. تعیین درصد عناصر آلیاژی در چدنهای نایهار بستگی دارد به ابعاد قطعه و خواصی که از آن انتظار می‌رود. زمانیکه مقاومت سایشی خوب و ضربه‌پذیری پایین مورد نظر باشد کاربیدهای درشت‌تر انتخاب شده و نتیجتاً درصد کربن بین 6/3 -3/3% انتخاب می‌شود و زمانیکه قطعه در معرض بارهای ضربه‌ای قرار می‌گیرد کربن بین 2/3-7/2% متغیر خواهد بود. درصد عناصر بستگی به سرعت سرد شدن و ضخامت قطعه دارد برای قطعات با ضخامت 1 تا 2 اینچ سیکل بین 2/4 – 4/3% برای به تعویق انداختن در تبدیل پرلیتی و اطمینان از تبدیل کامل مارتنزیتی ضروری است. چنانچه ضخامت قطعه بالاتر باشد نیکل از 5/5 – 4% مورد استفاده قرار می‌گیرد تا پرلیت تشکیل شود.
در نایهارد نوع II چنانچه درصد نیکل پایین باشد پرلیت تشکیل می‌شود و چنانچه مقدار نیکل زیاد باشد به پایداری استنیت کمک می‌کند. تفاوت اصلی در بین 4 آلیاژ چدنهای نایهارد در کاربردد آنهاست. در جدول زیر که بر اساس ASTM است مشخصات کلی این 4 کلاس متفاوت نایهارد با هم مقایسه شده است:
M5% %cr % Ni %mn %si %T.c Tape Specify no Specifying body
Min 4/1 5/3 3 A A532
Fe3c

 


(fecr)7c3

 

 

 

Astm
Max 1 4 5 3/1 8/0 6/3
Min 4/1 5/3 5/2 B
Max 1 4 5 3/1 8/0 3
Min 1/1 7/2 9/2 C
Max 1 5/1 4 3/1 8/0 7/3
Min 7 5 1 5/2 D
Max 1 11 7 3/1 2/2 6/3
مقاومت به ضربه نوع D بسیار بالاتر از سه مورد قبل (A, B, C) می‌باشد. SI در آن بالاست و نقش کمک کردن به تشکیل کاربید را تسریع می‌کند چون حلالیت کربن در گاما را کاهش می‌دهد. چدنهای نیکل- سخت بوفور در عملیات خرد کردن، پودر کردن، نورد کردن، و حمل مواد به کار برده می‌شوند. دو گروه عمده چدن نیکل سخت وجود دارند، چدنهای با 4% نیکل و چدنهای با 6% نیکل و 9% کروم که معمولاً به نیکل سخت 2 و 4 موسوم‌اند. نوع 2 چدن نیکل سخت شامل کاربیدهای یوتکتیکی M3C لدبوریتی است و بنابراین دارای چقرمگی کمی است در صورتیکه نوع 4 چدن نیکل سخت عمدتاً شامل کاربیدهای ناپیوسته M7C3 است و در نتیجه چقرمگی نیکل سخت 4 بیشتر است. چدن نیکل سخت نوع 2 چقرمگی کمتری دارد عمدتاً در تولید غلطکهای فلز کاری مورد استفاده قرار می‌گیرد.
متالورژی و کاربرد چدنهای نیکل- سخت نوع 4 تقریباً مشابه چدنهای پرکروم است. اما مشاهده شده است که در کاربردهای خاص مانند گلوله‌های آسیاب و جدار پوسته آسیابهای سیمان با قطر زیاد که قطعات ریختگی در آن هم تحت سایش و هم ضربات مکرر سنگین قرار دارند نیکل سخت 4 مقاومت لازم برای شکست را ایجاد نمی‌کند. به طور کلی مقاومت شکست چدنهای پرکروم بیش از چدنهای نیکل سخت 4 است. مشخصه‌ای که سبب ارجحیت بارز چدنهای نوع نیکل سخت 4 در مقایسه با چدنهای پرکروم می‌شود قابلیت سختی‌پذیری عالی آن است.
محدودیت استفاده از این نوع چدنها مخصوصاً در نوع 2، مربوط به شبکه پیوسته کاربید آهن می‌شود که دانه‌های آستینت رادر خود احاطه کرده است و باعث تردی آن می‌گردد. همچنین در مقاطع ضخیم این نوع چدنها را نمی‌توان تولید نمود زیرا امکان به وجود آمدن گرافیت آزاد و کاهش مقاومت به سایش وجود دارد. دیگر اینکه سختی فاز کاربید آهن از کاربیدهای آلیاژی کمتر است. سمانتیت یا کاربید آهن را می‌توان با کاربیدهای دیگر جایگزین نمود به این طریق این امکان وجود دارد که چدنی تولید نمود که فاز کاربید آن از سمانتیت سخت تر بوده و از نظر ساختاری نیز خواص مکانیکی بهتری را عاید نماید.
ساختمان سطح مقطع و تاثیر آن روی خواص مکانیکی:
عواملی که روی خواص این گونه چدنها مخصوصاً بر روی سختی ضربه‌پذیری آن اثر می‌گذارند عبارتند از:
1- نوع کاربید
2- شکل و اندازه کاربیدها
3- اندازه دانه‌ ها
4- ساختمان زمینه
فازهای کاربیدی در چدنهای نیکل سخت
ترکیب شیمیایی تمام چدنهای نیکل – سخت طوری انتخاب می‌شود که بیشتر ساختار به صورت کاربید یوتکتیک و آستنیت جامد شود. مقدار کاربید یوتکتیک که تشکیل می‌شود و نیز ساختار زمینه به ترکیب شیمیایی چدن بستگی دارند.
تفاوت بین ساختار کاربیدی در انواع 2 و 4 چدنهای نیکل – سخت در شکل زیر نشان داده شده است.

 

 

 

 

 

چدن نیکل – سخت نوع 2 دارای ساختار لدبوریتی خاصی است که در آن کاربید M3C در برابر زیر ساختار پیوسته حضور دارد. ساختار کاربیدی علاوه بر اینکه محل مساعدی برای شروع ترک است مسیر بهتری برای اشاعه ترک نیز است. بر عکس چدن نیکل سخت نوع 4 دارای ساختار یوتکتیکی است که در آن کاربیدهای نوع M7C3 به طور ناپیوسته حضور دارند. مزیت این نوع ساختار کاربیدی این است که گر چه کاربید M7C3 به اندازه M3C ترد است ولی ترکهایی که در آن ایجاد می‌شوند قبل از این که وارد زمینه به مراتب نرمتری شوند نمی‌توانند خیلی اشاعه پیدا کنند و به این دلیل چدن نیکل- سخت نوع 4 مقاومت به وضوح بیشتری به شکست دارند تا نوع چدن نیکل سخت 2.
کاربیدهای نوع M7C3 نسبت به کاربیدهای M3C از سختی بیشتری برخوردارند ضمن این که کاربیدهای نوع M7C3 ساختار ظریفتر را ایجاد می‌نماید که منجر به سختی‌پذیری بهتر می‌گردد. کاربیدهای M3C عموماً دارای شبکه پیوسته هستند که باعث می‌شوند در مقایسه با کاربیدهای M7C3 ضربه‌پذیری و سختی کمتری داشته باشند.
تمام عناصر آلیاژی موجب افزایش درصد حجمی فاز کاربید در چدنهای نیکل – سخت می‌شوند. اما تاثیر این عناصر در مقایسه با اثر خود کربن جزئی است. دامنه حجمی کاربید در نوع 4 چدن نیکل- سخت کلی چدن‌های نیکل- سخت دخالت دارد.
تاثیر شکل و اندازه کاربیدها
معمولاً ریزتر بودن کاربیدها و یک‌نواختی آنها نیز خواص ضربه را بهتر می‌کند لذا استفاده از روشهای انجماد سریع و اضافه کردن پاره‌ای مواد تلقیحی نظیر فرونیتانیوم یا فروکروم کربن به ذوب می‌‌تواند ساختاری ظریفتر و یکنواخت‌تر را ترغیب نماید. البته اخیراً با روشهای دیگری نظیر عملیات حرارتی خاص و یا کنترل ترکیب آنالیز توانسته‌اند شکل کاربیدها را نیز کنترل نماید.
اندازه دانه‌ها
هر قدر اندازه دانه‌ها کوچکتر باشند مقاومت به ضربه را بهبود می‌بخشد.
ساختمان زمینه:
ساختار زمینه توسط آلیاژی کردن صحیح قطعه با توجه به اندازه آن کنترل می‌شود. این چدنها درحالت ریخته شده فاقد گرافیت بوده و دارای ساختار شامل کاربیدهای یوتکتیکی با زمینه‌ای که آستنیت در آن غالب است می‌باشند. در صورتیکه عناصر آلیاژی به مقدار کافی موجود نباشند ممکن است به جای آستنیت مقادیری پرلیت نرمتر یا گرافیت به وجود آید. انجام عملیات آلیاژی کردن سبب ایجاد مقادیر زیادی آستنیت باقیمانده بعد از عملیات حرارتی می‌شود. به منظور ایجاد حداکثر سختی و مقاومت به سایش عملیات حرارتی انجام می‌شود تا زمینه‌ای با ساختار مارتنزیت فاقد آستنیت باقمیمانده ایجاد شود. بهترین ترکیب شیمیایی به ابعاد قطعه زیختگی و خواص مورد نظر بستگی داشته و معمولاً در دامنه زیر قرار دارد:
کربن 3/3-6/2%
سیلیسم 2-5/1%
منگز 8/0-6/0%
کروم 9-8%
نیکل 5/5-8/4%
مولیبدن 1-5/0%
با در نظر گرفتن این مطلب که %si + 0/3 % Cr از 1/4 بزرگتر است. مطمئناً توسط این ترکیب به جای کاربیدهای لدبوریتی، کاربیدهای ناپیوسته تشکیل می‌شوند.
علاوه بر کاربیدها آنچه خواص مکانیکی این نوع چدن را تحت تاثیر قرار می‌دهد مابقی ساختار است. جهت حصول بهتر مقاومت سایش بهتر است زمینه مارتنزیتی به دست بیاید منتهی محدودیتهای نظیر عدم اطلاع دقیق از نحوه خروج حرارت از قطعه و تاثیر تغییر ضخامت و ترکیب شیمیایی و ... باعث عدم توفیق ریخته‌گران در به دست آوردن زمینه مارتنزیتی می‌باشد. مشکل این است که در هنگام سرد کردن تبدیل آستنیت به پرلیت صورت گرفته و حضور پرلیت در جوار کاربید به شدت از مقاومت فرسایشی قطعه می‌کاهد و کروم به تنهایی برای جلوگیری از این تحول کافی نمی‌باشد لذا از عناصر آلیاژی مولیبدن، مس و نیکل جهت کاهش سرعت بحرانی سرد شدن می‌توان استفاده نمود.
مساله دیگر این است که به دلیل حلالیت زیاد کربن در آستنیت امکان باقی ماندن مقداری آستنیت باقی مانده تا درجه حرارت محیط وجود دارد. در مورد آستنیت باقیمانده دو نظر وجود دارد: در حالیکه صرفاً مقاومت سایشی مطرح است و ضربه وجود ندارد آستنیت باقیمانده نامطلوب تلقی می‌شود زیرا سختی مجموعه کمتر می‌شود و در مواردی که سایش توام با ضربه شدید وجود دارد کار سختی در لایه تماس صورت گرفته در حالی که میان قطعه دارای انعطاف بیشتری است در چنین صورت وجود مقداری آستنیت باقی مانده مجاز خواهد بود که مقدار آن باید زیر 5% باشد.
اثر عناصر آلیاژی
کربن: سختی به مقدار زیاد توسط مقدار کاربیدهای موجود، که خود به مقدار کربن بستگی دارد کنترل می‌شود. در کاربردهایی که حداکثر سختی و مقاومت به بارگذاری ضربه‌ای از اهمیت ثانوی برخوردار است از کربن به مقدار 3/3% استفاده کرد ولی در جایی که ضربات تکراری اعمال می‌شود باید مقدار کربن در دامنه 6/2 تا 9/2 باشد. جدول زیر اثر مقدار کربن را بر عمر سختی ناشی از ضربه در چدنهای نیکل سخت نوع 4 نشان می‌دهد.
مقدار کربن % عملیات حرارتی عمر خستگی – ضربه‌ای (تعداد ضربات)
48/3 8 ساعت –0c800 سرد شدن در هوا 648
01/3 8 ساعت –0c800 سرد شدن در هوا 1670
90/2 8 ساعت –0c800 سرد شدن در هوا 3728
60/2 8 ساعت –0c800 سرد شدن در هوا 4590

 

چقرمگی تحت ضربات تکراری (عمر خستگی ضربه‌ای) بر حسب تعدا ضربات لازم برای شروع شکست در یک گلوله چدنی نیکل سخت به قطر mm60 که مکرراً از ارتفاع m7 بر روی یک سندان فولادی شیب‌دار می‌افتد ارزیابی شده است.
جهت حصول حجم مناسب از کاربیدهای m7c3 و ایجاد سختی‌پذیری لازم در چدنهای نایهارد مقدار آن
Grade 2A Bs2/3 – 7/2% و B2 Grade Bs% 6/3 -2/3 انتخاب می‌شود. ازدیاد کربن باعث ازدیاد مقدار کاربید شده که سختی قطعه را افزایش می‌دهد و همچنین تردی را نیز زیادتر می‌کند. در مقادیر ماقبل یوتکتیک (اگر مقدار کربن یوتکتیک برای 7% کروم حدود 2/3 است) ابتدا مذاب آستنیت جدا شده در تحول یوتکتیک مابقی ذوب به کاربید m7c3 و آستنیت تبدیل می‌شود که نهایتاً زمینه دارای کاربیدهای محصور در زمینه آستنیت است. در حوالی کربن یوتکتیک ساختمان یکنواختی از کاربید m7c3 و آستنیت یوتکتیکی ظاهر می‌شود اما چنانچه مقدار کربن بیشتر از یوتکتیک باشد از مذاب کاربیدهای m7c3 جدا شده که دانه‌های یوتکتیکی را احاطه کرده است. چنانچه مقدار کربن خیلی پایین باشد با تشکیل کاربید کروم درصد کربن آستنیت‌ به میزان قابل توجهی کاهش می‌یابد و لذا در تبدیلات بعدی نخواهد توانست سختی‌پذیری کافی را داشته باشد.

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  40  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلودمقاله چدن های پر آلیاژ

کارآفرینی شرکت صنایع چدن پارس

اختصاصی از فی توو کارآفرینی شرکت صنایع چدن پارس دانلود با لینک مستقیم و پر سرعت .

کارآفرینی شرکت صنایع چدن پارس


کارآفرینی شرکت صنایع چدن پارس

مقدمه

شرکت صنایع چدن پارس، واقع در شهر صنعتی کاوه شهرستان ساوه در سال 1364 به منظور انجام فعالیتهای ریخته گری تأسیس گردید. تجهیزات اولیه‌ی خط تولید این واحد صنعتی از آلمان غربی خریداری شد. ساخت ساختمان و خرید ماشین آلات برای راه اندازی کارخانه تا سال 1369 طول کشید. خط تولید اولیه با ظرفیت 1000 تن در سال، شامل ماشین آلات و دستگاههایی به قرار زیر است:

  • یک دستگاه کوره‌ی ذوب القایی با ظرفیت‌یک تن (با فرکانس شبکه= 50 هرتز)؛
  • خط قالبگیری نیمه اتوماتیک شامل ماشین قالبگیری فشاری- ضربه ای(Jolt Squeeze) ساخت آلمان با درجه‌ی به ابعاد 636*800(میلی متر مربع)؛
  • دو دستگاه میکسر (Mixer) ماسه از نوع غلتکی با ظرفیت 200 کیلوگرم؛
  • دو دستگاه ماشین ماهیچه گیری به روش (جعبه‌ی سرد)، ساخت آلمان غربی؛
  • سیستم کامل ارزیابی و احیای ماسه برای خط تولید شامل:

1)5 دستگاه نوار نقاله با عرض 650 میلی متر؛

2)دستگاه جدا کننده‌ی مغناطیسی (MAGNET SEPERATOR

3)الواتور کاسه ای؛

4)سرند شش وجهی برای جدا کردن ذرات ریز از درشت؛

5)سیلوهای ذخیره‌ی ماسه‌ی کهنه؛

6)فرستنده های ماسه(انتقال دهنده‌ی ماسه بوسیله‌ی فشار باد)؛

  • ROLL BOND و درجه؛
  • تجهیزات آزمایشگاه شامل:

یک دستگاه کوانتومتر (این دستگاه به روش طیف سنجی ظرف مدت بسیار کوتاهی (حداکثر‌یک دقیقه) عناصر تشکیل دهنده‌ی نمونه های اولیه‌ی مذاب را به روش کامپیوتری نشان می دهد.

و هم چنین دیگر دستگاهها و لوازم آزمایشگاهی.

(به منظور تولید قطعات با کیفیت مرغوب تر، تجهیزات آزمایشگاه از بهترین مارکهای اروپایی خریداری و مورد استفاده قرار گردید.)

نصب این تجهیزات تا نیمه‌ی اول سال 1371 به طول انجامید. عملیات نصب و راه اندازی توسط متخصصین داخلی انجام گردید. برای نصب بخش عمده ای از ماشین آلات و تجهیزات تولیدی، از امکانات داخلی استفاده گردید....

 

این مقاله به صورت  ورد (docx ) می باشد و تعداد صفحات آن 60 صفحه آماده پرینت می باشد

چیزی که این مقالات را متمایز کرده است آماده پرینت بودن مقالات می باشد تا خریدار از خرید خود راضی باشد

مقالات را با ورژن  office2010  به بالا باز کنید


دانلود با لینک مستقیم


کارآفرینی شرکت صنایع چدن پارس

دانلود مقاله ریخته گری چدن

اختصاصی از فی توو دانلود مقاله ریخته گری چدن دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله ریخته گری چدن


دانلود مقاله ریخته گری چدن

 عنوان چدن ریختگی مشخص کننده دسته بزرگی از فلزات است . فلزاتی که در این دسته قرار دارند از نظر خواص با یکدیگر  تفاوتهای فاحش دارند . عنوان چدن ریختگی ، همانند  عنوان  فولاد  که  مشخص کننده دسته دیگری از فلزات است ، یک عبارت کلی است  .  فولادها  و چدنها در اصل آلیاژ آهن هستند که با کربن  ساخته  شده اند  اما  فولاد همواره کمتر از دو درصد کربن داشته و معمولاً درصد کربن آنها  از  یک درصد بیشتر نمی شود . درحالیکه چدنها بیش از دو درصد کربن  دارند. چدنها ی  ریختگی گذشته از کربن باید دارای  مقادیر  قابل  توجهی  از سیلیسیم باشند که عموماً میزان آن از یک تا سه درصد متغیر است .             
 تفاوتهای مذکور  اختیاری  و  دلخواه  نیست  اما همین امر ریشه متالورژیکی  و  عامل  موثری  است  که  سبب می شود خواص مفید و متفاوتی در این دو دسته از گروه فلزات آهنی پدید آید .
امید است این پروژه سهمی در پیشبرد صنعت وتکنولوژی ریخته گری چدن در ایران داشته باشد و مورد  استفاده  دیگر دانشجویان  نیز قرار گیرد .  

تقسیم بندی انواع چدنها :
چدن سـفید :
         در چدنهای سفید کربن به شکل کاربید آهن یا  سمانتیت  ظاهر       می شود  . کاربید آهن ترکیب شیمیایی کربن  موجود در مذاب  همراه با آهن می باشد بصورت مجموعه ای از اجزاء سخت  و  شکننده می باشند که به آنها سمانتیت نیز گفته میشود ، کاربید آهن  یا  سمانتیت تعیین کننده خواص نهایی ریز  ساختار می باشد .  به  همین  دلیل چدن سفید اساساً آلیاژی سخت و شکننده است . سطح مقطع شکست این  چدن  به  رنگ سفید بوده و استحکام فشاری زیادی خواهد داشت .

 
تقسیم بندی انواع چدنها :
        مشخصات عمومی آلومینیوم و آلیاژهای آن :
مشخصات ریخته گری و ذوب :
تقسیم بندی آلیاژها :
مواد شارژ و آماده کردن آنها :
 
شمشهای اولیه :
روی ( zn ) :
منیزیم ( mg ) :
سیلیسیم (  si  )  :
شمشهای دوباره ذوب ( ثانویه ) و قراضه :
آلیاژ سازها ( Hardeners ) :
فرآیند تولید قطعات در کارخانه :
قالبگیری :
پوشانهای آماده :
نکات ایمنی اپراتوری کوره :
دستور العمل راه اندازی وشارژ کوره :
عناصر تشکیل دهنده فولاد کربنی:
فولاد های کم کربن:  

شامل 29 صفحه فایل word


دانلود با لینک مستقیم


دانلود مقاله ریخته گری چدن

دانلود پایان نامه تکنولوژی ساخت چدن دوگونه (چدن G&D)

اختصاصی از فی توو دانلود پایان نامه تکنولوژی ساخت چدن دوگونه (چدن G&D) دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه تکنولوژی ساخت چدن دوگونه (چدن G&D)


دانلود پایان نامه تکنولوژی ساخت چدن دوگونه (چدن G&D)

تکنولوژی ساخت چدن دوگونه (چدن G.D)

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه:137

فهرست مطالب :

فصل اول: شناخت فلز آهن

1-1) طبیعت و خواص آهن

1-2) سنگهای معدنی آهن خالص

1-3) خواص بلوری آهن خالص

1-4) فرآیند استخراج آهن (متالورژی استخراجی آهن)

1-5) انواع آهن

1-5-1) آهن خام (لخته)

1-5-1-1) خواص آهن خام (لخته)

1-5-2) آهن کار شده

1-5-2-1) خواص و کاربرد آهن کار شده

فصل دوم: چدن شناسی عمومی

2-1) طبیعت چدن ها

2-2) خصوصیت چدن ها

2-2-1) برتری ها

2-2-2) کاستی ها

2-3) انواع چدن ها

2-3-1) چدن برای مقاصد عمومی (معمولی)

2-3-1-1) چدن مالیبل (چدن چکش خوار)

2-3-1-2) چدن سفید

2-3-2) چدن برای مقاصد ویژه (آلیاژی)

2-4) متالورژی چدنها

2-4-1) سیستم آهن – کربن – سیلیسیم

2-4-1-1) کربن معادل

2-4-2) حضور کربن در چدن

2-4-2-1) کربن آزاد (گرافیت)

2-4-2-2) کربن ترکیبی (کاربید)

2-4-3) ساختار زمینه ها در چدن

2-4-3-1) فریت

2-4-3-2) پرلیت

2-4-3-3) سمنیت

2-4-3-4) آستیت (اوتسیت)

2-4-3-5) بینیت و مارتنزیت

2-4-3-6) کاربیدها

2-5 ) تأثیر عناصر در چدن

2-5-1) عناصر عمده

2-5-1-1) گوگرد (S)

2-5-1-2) منگنز (Mn)

2-5-1-3) فسفر (P)

2-5-2) عناصر جزئی

2-5-3) عناصر آلیاژی

2-5-3-1) نیکل (Ni)

2-5-3-2) کرم (Cr)

2-5-3-3) مولیبدن (Mo)

2-5-4-3) وانادیم (Va)

2-5-3-5) سیلییم (Si)

2-5-3-6) مس (Cu)

2-5-3-7) آلومینیوم (Al)

2-5-4) عناصر گازی

2-5-4-1) اکسیژن (O)

2-5-4-2) نیتروژن (ازت N)

2-5-4-3) هیدروژن (H)

2-6) موارد استعمال چدن ها

2-6-1) چدن خاکستری (ریختگی)

2-6-2) چدن مالیبل (چکش خوار)

2-6-3) چدن داکتیل (نشکن)

فصل سوم: چدن شناسی تخصصی

3-1) چدن خاکستری

3-1-1) متالورژی چدنهای خاکستری

3-1-2) ساختار میکروسکوپی در چدنهای خاکستری

3-1-2-1) گرافیت (G)

3-1-3) ریخته گری چدن خاکستری

3-1-3-1) مواد شارژ

3-1-3-2) مسئله‌ی تلقیح مواد در ریخته گری چدن خاکستری

3-1-3-2-1) عملکرد تلقیح

3-1-3-2-2) مواد تلقیح

3-1-3-2-3) روش های تلقیح

3-1-3-2-4) اثر مواد تلقیح

3-1-3-2-5) ارزیابی عملکرد تلقیح

3-1-3-3) متالورژی ذوب چدن خاکستری

3-1-3-3-1) گرافیت زایی

3-1-4) انجماد چدن خاکستری

3-1-4-1) گرایش انجماد به تشکیل چدن سفید

3-1-4-2) گرایش انجماد به تشکیل چدن خاکستری

3-1-4-3) اصول فرآیند انجماد

3-1-4-4) ساختار چدن خاکستری در دمای محیط

3-1-4-5) اثر ضخامت

3-2) چدن داکتیل (نشکن)

3-2-1) مبانی ساخت چدن داکتیل

3-2-2) کاربرد چدن داکتیل

3-2-3) متالورژی چدن داکتیل (نشکن)

3-2-3-1) انجماد و مکانیزم کروی شدن گرافیت در چدن نشکن

3-2-3-2) تعادل آهن و گرافیت

3-2-3-2-1) کربن معادل

3-2-3-2-2) انجماد هیپویوتکتیکی

3-2-3-2-3) انجماد هیپر (هایپر) یوتکتیکی

3-2-3-2-4) مکانیزم کروی شدن گرافیت

3-2-4) ریخته گری چدن داکتیل (نشکن)

3-2-4-1) مواد شارژ

3-2-4-2) ملاحظات کیفی، شیمیایی و متالورژیکی در حین ذوب

3-2-4-2-1) کربن دهی

3-2-4-2-2) کنترل گاز مذاب

3-2-4-2-3) گوگرد زدایی

3-2-4-2-4) انتخاب ترکیب شیمیایی

3-2-4-2-5) اثر کربن معادل

3-2-4-3) اثر درجه حرارت بارریزی

3-2-4-4) فرآیند کروی سازی

3-2-4-4-1) مشکلات افزدون منیزیم به شکل خالص

3-2-4-4-2) روشهای مختلف کروی سازی

3-3) چدن با گرافیت فشرده (CGI)

3-3-1-1) ریزساختار

3-3-1-2) ترکیب شیمیایی

3-3-1-3) خواص مکانیکی و فیزیکی

3-3-1-3-1) خواص کششی

3-3-1-3-2) هدایت حرارتی

3-3-1-3-3) جذب ارتعاش

3-3-1-3-4) قابلیت رشد و پوسته شدن

3-3-2) ریخته گری چدن با گرافیت فشرده

3-3-2-1) عملیات ذوب و تهیه مذاب چدن با گرافیت فشرده

3-3-2-2) مواد قالبگیری

3-3-3) کاربردهای صنعتی چدن با گرافیت فشرده (CGI)

3-3-4) مقایسه چدن با گرافیت فشرده در مقابل چدن های خاکستری و نشکن

3-3-4-1) در مقایسه با چدن خاکستری (مزایا CGI)

3-3-4-2) در مقایسه با چدن نشکن (مزایا CGI)

فصل چهارم: تئوری چدن دوگونه (G&D)

4-1) مقدمه ای بر چدن دو گونه (G&D)

4-2) مقدمه ای بر مسئله‌ی تکنولوژی

4-3) تشریح تکنولوژی ساخت

چکیده :

فصل اول: شناخت فلز آهن

1-1) طبیعت و خواص آهن:

آهن دارای نقطه‌ی ذوب و نقطه‌ی جوش می باشد. وزن مخصوص این فلز 86/7 و شعاع اتمهای آهن به صورت (گاما) و به صورت آلفا است.

آهن خالص را نمی توان به طریق صنعتی تهیه کرده آهن با درصد خلوص 9917/99 در آزمایشگاه ها قابل تهیه است. آهن ساخته شده در آزمایشگاه ها 0083/0 درصد ناخالصی دارد و در حدود 27 عنصر را در بر می گیرد که اهم ترکیبات آن عبارتند از کربن، سیلیسیم، گوگرد، فسفر (عناصر دائمی همراه آهن) و سایر ناخالصی ها از قبیل هیدروژن، ازت، کلسیم، منیزیم و غیره. هر نوع ناخالصی روی خواص آهن تأثیر می گذارد، مثلاً اگر مقدار درصد کربن آهن از 02/0 درصد به 1/0 درصد افزایش پیدا کند، هدایت حرارتی آهن را از 177/0 به 134/0 کاهش می دهد. تأثیر ناخالصی های غیرفلزی (فسفر، گوگرد، اکسیژن، ازت و هیدروژن) حتی به مقادیر بسیار ناچیز روی خواص آهن، به مراتب زیادتر از ناخالصیهای فلزی است. از قبیل مس، نیکل، منگنز و غیره است.

آهن خالص قابلیت استفاده صنعتی را ندارد. قابلیت انعطاف آهن خالص زیاد و سختی آن بسیار کم است. این آهن قابلیت سخت شدن را ندارد. بدین علت مطالعه اشکال وجود ناخالصی ها یا به عبارتی دیگر چگونگی انحلال کربن و اکسیژن و سایر ناخالصیها در آهن مذاب از اهمیت زیادی برخوردار است.

1-2) سنگهای معدنی آهن خالص:

تمامی یا بهتر بگویم اکثر فلزات در طبیعت به صورت سنگهای معدنی یافت می شوند، لذا آهن نیز از این قاعده مستثنی نیست. از آن جایی که این فلز یکی از مهمترین مواد اولیه صنایع مهندسی می باشد لذا صنایع بسیاری در مراکزی نزدیک به منابع سنگ آهن، به شرط آن که انرژی‌های سوختی نیز در دسترس باشند تأسیس می گردند.

معمولاً در صنایع استخراجی، سنگهای معدن اکسیدی آهن دارای عیار بیشتری نسبت به سنگهای کربناتی آهن هستند. پس یک سنگ آهن خوب معمولاً محتوی بیش از 20% آهن بوده و در بعضی از انواع سنگ معادن آهن خالص، نظیر هماتیت این مقدار می تواند تا 70% افزایش یابد. در جدول (1-1)، به انواع ترکیبات سنگهای معدنی آهن اشاره شده است.

1-3) خواص بلوری آهن خالص:

آهن یک فلز آلوتروپیک است، بدین معنی که بیشتر از یک نوع شبکه‌ی بلوری دارد، در واقع ساختمان شبکه‌ی بلوری دارد، در واقع ساختمان شبکه‌ی بلوری آن در دماهای مختلف تغییر می یابد. منحنی تبرید آهن خالص در شکل (1-1) نشان داده می شود.

شکل (1-1): منحنی تبرید برای آهن خالص

آهن در دمای انجماد یافته و شبکه‌ی بلوری آن b.c.c می‌شود. این آهن را آهن (دلتا) می نامند. در تغییر آلوتردپی در آهن ظاهر شده، اتمها موقعیت خود را تغییر می دهند و شبکه‌ی بلوری در آهن ظاهر شده، اتمها موقعیت خود را تغییر می دهند و شبکه‌ی بلوری آهن از b.c.c به f.c.c تبدیل می گردد. این آهن را آهن (گاما) می‌نامند که غیرمغناطیسی است. وقتی درجه‌ی حرارت به رسید تغییر فاز دیگری در آهن رخ می دهد و دوباره تغییر آلوتروپی در آهن ظاهر شده و شبکه‌ی بلوری آن مجدداً از f.c.c. به b.c.c تبدیل می شود. این آهن را آهن  (آلفا) می نامند که هنوز خاصیت مغناطیسی ندارد. سرانجام در آهن بدون اینکه شبکه‌ی بلوری خود را تغییر دهد خاصیت مغناطیسی پیدا می کند. قبلاً آهن غیرمغناطیسی را آهن (بتا) می نامیدند ولی بعدها با مطالعات و بررسی های اشعه‌ی X معلوم شد که در ساختمان شبکه‌ی بلوری آهن تغییر نمی کند. سپس کلیه‌ی تغییرات آلوتروپی در موقع خنک کردن آهن حرارت پس می دهند (اگزوترمیک یا گرمازا) و در هنگام گرم کردن آن حرارت جذب می کنند (اندوترمیک یا گرماگیر).

شکل (1-2): شبکه‌ی بلوری و آرایش اتمهای مکعب مرکزدار (b.c.c)

شکل (1-3): شبکه‌ی بلوری و آرایش اتمهای مکعب با سطوح مرکزدار (f.c.c)

1-4) فرآیند استخراج آهن (متالورژی استخراجی آهن):

سنگ آهن به همراه یک کک مناسب سخت از طریق قسمت بالای کوره ای استوانه‌ای بلند، به داخل کوره ریخته می شود (شکل 1-4).

شکل (1-4): نمای کلی یک کوره بلند ذوب آهن شامل: 1. قیف ناودانی 2. واگن وزن کننده شارژ 3. واگنت انتقال مواد به کوره 4. قیف شارژ 5. تویرهای هوا 6. کف کوره 7. سوراخ خروج سوباره

در این کوره هوا با فشار لازم از طریق تویرهای هوا به طرف بالا جریان یافته و اکسیژن لازم را برای احتراق کک فراهم می آورد. حرارت و کربن حاصل از کک باعث احیاء سنگ آهن و تبدیل آن به چدن مذاب می گردد. مذاب چدن به تدریج از قسمتهای فوقانی کوره ذوب شده و با گذشتن از لابلای تکه های کک در ته کوره جمع می گردد. این نکته را بایستی به خاطر داشت که هر گونه سنگ معدن مصرفی، محتوی مقادیری مواد معدنی ناخواسته به نام «گانگ» بوده ولذا برای جدا کردن این مواد زائد (به همراه خاکستر حاصل از سوختن کک) از مذاب، مقداری آهک نیز به داخل کوره ریخته می شود.

آهک این مواد زائد را به صورت سرباره رقیقی درآورده و از طریق سوراخی که در زیر تویرهای هوا و بالای سوراخ خروج مذاب قرار دارد این سرباره از کوره خارج می گردد. از آنجایی که روش گداز و تصفیه سنگ معدن آهن به طریق فوق فرآیند ساده ای می باشد لذا دارای قدمتی هزاران ساله است. اولین کوره های به کار گرفته شده توسط انسان، بسیار ابتدایی بوده و از سنگ ساخته می شده است. این کوره ها دارای ظرفیت ذوب محدودی بوده است. با گسترش صنایع، کوره های به مراتب بزرگتری جایگزین کوره های سنگی گردیدند.

در اولین طرحهای صنعتی کوره های بلند، به جای بدنه سنگی از ورقه های چدنی که درون آن توسط آجرهای نسوز پوشیده شده بود استفاده شد. امروز این نوع جداره ها جای خود را به استوانه های فولادی داده که درون آنها توسط دیرگدازه های مناسبی پوشش گردیده است. در مراحل اولیه تکامل این نوع کوره ها از هوا با درجه حرارت نرمال (درجه حرارت محیط) استفاده شد و به همین دلیل این نوع کوره ها به کوره های بلند با هوای سرد معروف گردیدند.

یکی از تکاملهای اساسی در زمینه کوره های بلند جایگزین نمودن هوای پیش گرم شده بجای هوای سرد است. پیش گرم کردن هوای ورودی به کوره در برجهای گرم کن انجام می شود. در این نوع برجها، آجرهای نسوز را به صورت لانه زنبوری می چینند. گازهای گرم خروجی از کوره بلند که احتراق آنها به طور ناقص انجام یافته، وارد و برج گرم کن شده و به همراه هوای اضافی که وارد این برجها می گردد، این گازها سوخته و باعث حرارت دیدن آجرهای برجها می شود. در هنگامی که گازهای خروجی از کوره بلند صرف حرارت دادن این برجها می گردد دو برج دیگر که قبلاً به طریقه مشابه گرم شده اند، هوای مورد نیاز کوره بلند را از خود عبور داده و آن را تا حدود 650 درجه سانتیگراد پیش گرم می سازند. در فواصل کوتاه زمانی جهت جریان فوق تغییر کرده یعنی هنگامی که دو برج اول هوا ورودی به کوره را پیش گرم می کنند، گازهای خروجی از کوره بلند صرف حرارت دادن به دو برج دیگر می‌شود. در شکل (1-5)، نمای شماتیکی و ابعاد نسبی یک کوره بلند به همراه چهار برج گرم کن هوا نشان داده شده است.

تغییرات شیمیایی که در کوره بلند اتفاق می افتد نسبتاً ساده است. سوختن کک باعث تشکیل شده و قسمت اعظم در جریان تماس با کک گداخته به CO تبدیل می گردد. منواکسید کربن داغ، اکسید آهن را احیاء کرده و نتیجه واکنش انجام شده، آهن مذاب و گاز خواهد بود.

شکل (1-5): اندازه های نسبی یک کوره بلند و برجهای گرم کن هوای ورودی به کوره

آهک موجود در کوره نیز در اثر حرارت دیدن به و CaO تجزیه شده و CaO در ترکیب با ناخالصیها (اکثراً ) در سنگ معدن یک سرباره روان با نقطه‌ی ذوب پایینی را به وجود می آورد، لذا خروج ناخالصی از کوره و جداسازی آن را از مذاب مقدور می سازد. در زیر اهم فعل و انفعالات انجام یافته در یک کوره بلند نشان داده شده است.

  1. فعل و انفعالات مربوط به سوختن کک:
  2. احیای :
  3. احیای سنگ آهن:
  4. پیدایش سرباره:

در شکل (1-6)، روابط بین اجزاء متشکله شارژ کوره و محصولات واکنش های انجام یافته بین آنان نظیر چدن مذاب سرباره، و گازهای خروجی از کوره نشان داده شده است. در حالی که در شکل (1-7) نشان دهنده‌ی وزن واقعی عناصر مصرفی در کوره بلند می باشد. این نکته مهم را بایستی بخاطر داشت که اعداد نشان داده شده در شکل (7-1) بر مبنای مصرف سنگ معدن آهن خاص در یکی از کشورهای صنعتی جهان است. بدیهی است با تغییر نوع سنگ معدن و درصد ناخالیصهای محتوی آن مقادیر داده شده تغییر خواهند کرد.

شکل (1-6): رابطه‌ی بین مداد شارژ شده در کوره و محصولات به دست آمده از کوره

شکل (1-7): مقادیر نسبی مدار مصرف شده در کوره بلند برای تولید یک تن شمش چدن

1-5) انواع آهن:

1-5-1) آهن خام (لخته):

آهن خامی که از کوره بلند بدست می آید اولین تبدیل سنگ بصورت فلز قابل مصرف است. عمل کوره بلند یک فرآیند پیوسته است، سنگ معدن، سنگ آهک و ذغال کک به تناوب در کوره ریخته می شود، گاز و کربن موجود در ذغال کک اکسید آهن را طی واکنشهای قسمت قبل احیاء می نماید.

فرآیند واقعی احیاء بصورت ساده ای که در رابطه‌ی قسمت قبل نشان داده شد صورت نمی گیرد؛ بلکه در چندین مرحله انجام می گیرد ولی در هر صورت نتیجه نهایی مطابق روابط قبل است و نیز دو واکنش احیای سنگ آهن برگشت پذیر می باشند. اما می توان با تنظیم مقدار شارژ کوره درجه حرارت و مقدار هوای این واکنش ها را طوری کنترل کرد که در جهت مطلوب صورت گیرند به تدریج که شارژ کوره به نزدیکی شکم کوره می رسد و درجه حرارت بالا می‌رود و سنگ آهن احیاءشده و به شکل اسفنج گداخته درمی آید، در این مرحله آهن، کربن زیادتری جذب می نماید. که موجب پایین آمدن نقطه‌ی ذوب می شود. در این مرحله آهن، کربن زیادتری جذب می نماید. که موجب پایین آمدن نقطه‌ی ذوب می شود؛ تا اینکه بالاخره آهن ذوب شده، و بر روی قطعات سوخته‌ی ذغال گداخته جاری گردیده و در بوته جمع می شود. این آهن خام مذاب را هر پنج یا شش ساعت یک بار از کوره خارج می نمایند. آهن خام را در قالبهای کوچک می ریزند، قطعات کوچک آهن که به شکل این قالبها در می آیند لخته نام دارند. محصول کوره بلند معمولاً به این اسم نامیده می شود.

1-5-1-1) خواص آهن خام (لخته):

به همراه سنگ آهن، اکسیدهای دیگری از سنگ معدن و زغال کک به وجود می‌آید، و به سادگی احیاء شدنی هستند که در کوره بلند احیاء می شوند. بنابراین تمام فسفر و قسمت عمده منگنز موجود در سنگ معدن در آهن خام باقی می مانند ولی اکسیدهای گوگرد و سیلیسم کاملاً احیاء نمی شوند. اکسیدهای کلسیم، منیزیم و آلومینیوم، به کمک کربنات کلسیم موجود در سنگ آهک به صورت سرباره در آمده و از کوره خارج می شود. در نتیجه آهن خام شامل حدود 4% کربن، تمام فسفر موجود در سنگ معدن و قسمت عمده منگنز آن است. مقدار سیلیسم و گوگرد موجود را می توان تا حدودی از روی مواد خام و همچنین نحوه کنترل ترکیب شیمیایی سرباره و درجه حرارت کوره معلوم نمود، تمام عناصر احیاء شده در فلز مذاب باقی می مانند. در حالی که تمام عناصر اکسید شده در سرباره جمع می شوند. بنابراین ترکیب تقریبی آهن خام از این قرار است.

و...

NikoFile


دانلود با لینک مستقیم


دانلود پایان نامه تکنولوژی ساخت چدن دوگونه (چدن G&D)

ریخته گری چدن

اختصاصی از فی توو ریخته گری چدن دانلود با لینک مستقیم و پر سرعت .

ریخته گری چدن


ریخته گری چدن

 

فایل بصورت ورد (قابل ویرایش) و در 33صفحه می باشد.

عنوان چدن ریختگی مشخص کننده دسته بزرگی از فلزات است . فلزاتی که در این دسته قرار دارند از نظر خواص با یکدیگر  تفاوتهای فاحش دارند . عنوان چدن ریختگی ، همانند  عنوان  فولاد  که  مشخص کننده دسته دیگری از فلزات است ، یک عبارت کلی است  .  فولادها  و چدنها در اصل آلیاژ آهن هستند که با کربن  ساخته  شده اند  اما  فولاد همواره کمتر از دو درصد کربن داشته و معمولاً درصد کربن آنها  از  یک درصد بیشتر نمی شود . درحالیکه چدنها بیش از دو درصد کربن  دارند. چدنها ی  ریختگی گذشته از کربن باید دارای  مقادیر  قابل  توجهی  از سیلیسیم باشند که عموماً میزان آن از یک تا سه درصد متغیر است .             

         تفاوتهای مذکور  اختیاری  و  دلخواه  نیست  اما همین امر ریشه متالورژیکی  و  عامل  موثری  است  که  سبب می شود خواص مفید و متفاوتی در این دو دسته از گروه فلزات آهنی پدید آید .

امید است این پروژه سهمی در پیشبرد صنعت وتکنولوژی ریخته گری چدن در ایران داشته باشد و مورد  استفاده  دیگر دانشجویان  نیز قرار گیرد .  


دانلود با لینک مستقیم


ریخته گری چدن