فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پروژه آماربررسی تاثیر مقدار درآمد افراد بر میزان رضایتمندی از زندگی13 صفحه

اختصاصی از فی توو پروژه آماربررسی تاثیر مقدار درآمد افراد بر میزان رضایتمندی از زندگی13 صفحه دانلود با لینک مستقیم و پر سرعت .

پروژه آماربررسی تاثیر مقدار درآمد افراد بر میزان رضایتمندی از زندگی13 صفحه


 پروژه  آماربررسی تاثیر مقدار درآمد افراد بر میزان رضایتمندی از زندگی13 صفحه

 جدول فراوانی توزیع شرکت کنندگان بر اساس جنس و نمودار

جدول فراوانی توزیع شرکت کنندگان بر اساس سن و نمودار

 

جدول فراوانی توزیع شرکت کنندگان بر اساس میزان تحصیلات و نمودار

جدول فراوانی توزیع شرکت کنندگان بر اساس ساعت کار در روزو نمودارو...

 

 

مقایسه میزان تحصیلات بر اساس جنس

مقایسه میزان درآمد بر اساس میزان تحصیلات و ...

 

توصیف متغیرهای کمی مطالعه

تعیین نرمال بودن توزیع متغیرهای کمی مطالعه توسط آزمون کولموگروف اسمیرنوف

 

یک گروه کمی با توزیع نرمال: آزمونT

 

دو گروه مستقل، کمی با توزیع نرمال: آزمون Independent sampel T test   

 

دو گروه مستقل کیفی اسمی: آزمون Pearson Chi-Square

 

دوگروه وابسته، کمی نرمال: آزمون t-test  (زوج)

 

دوگروه وابسته، کمی غیر نرمال: آزمون ویلکاکسون

 

همبستگی میزان درآمد با وضعیت زندگی

 

 

 

 

 

 

 


دانلود با لینک مستقیم


پروژه آماربررسی تاثیر مقدار درآمد افراد بر میزان رضایتمندی از زندگی13 صفحه

تحقیق درباره تحقیق درباره آشنایی با مسائل مقدار مرزی

اختصاصی از فی توو تحقیق درباره تحقیق درباره آشنایی با مسائل مقدار مرزی دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره تحقیق درباره آشنایی با مسائل مقدار مرزی


تحقیق درباره تحقیق درباره آشنایی با مسائل مقدار مرزی

فرمت فایل word: (لینک دانلود پایین صفحه) تعداد صفحات : 15 صفحه

 

 

 

 

 

-مقدمه :

بطورکلی یک مسأله مقدار مرزی بصورت زیر می باشد :

 

                                                             (1-1)

که در آن L یک عملگر دیفرانسیلی مرتبه m ام ، r یک تابع مفروض و  شرایط مرزی می باشند . فرض کنید x یک متغیر مستقل برای مسأله مقدار مرزی باشد و  شرایط مرزی در دو نقطه (مرزها) باشد بنابراین رابطة
(1-1) را می توانیم به فرم خطی زیر نیز بنویسیم :

    

                (1-2)

برای  ، k تا شرط مرزی مستقل خطی که تنها شامل مشتقات تا مرتبه (q-1)ام می باشند را شرایط مرزی essential (اساسی) می گوئیم . و () شرط باقیمانده را شرایط مرزی Suppressible می نامیم . ساده ترین مسأله مقدار مرزی که با معادلة دیفرانسیل مرتبه دوم می باشد بصورت زیر است :

(1-3)                   

با یکی از سه نوع شرایط مرزی که در زیر داده شده اند :

شرایط مرزی نوع اول                                        

شرایط مرزی نوع دوم                                      

شرایط مرزی نوع سوم که گاهی شرایط مرزی Sturm's  نامیده می شود :

 

بطوریکه  و  و  و  ثابتهای مثبت می باشند .

اگر در رابطه (1-1) ،  معادلة دیفرانسیل همگن نامیده می شود و همچنین بطور مشابه اگر در رابطه (1-2)  ها آنگاه شرایط مرزی همگن نامیده می شوند .

بنابراین مسأله مقدار مرزی همگن نامیده می شود اگر معادلة دیفرانسیل و شرایط مرزی همگن باشند یک مسأله مقدار مرزی همگن ( و ) تنها دارای جواب بدیهی  می باشد .

بنابراین ما آن دسته از مسائل مقدار مرزی را در نظر می گیریم که اگر یک پارامتر  را در معادلة دیفرانسیل یا در شرایط مرزی اثر دهیم بتوانیم آن را مشخص کنیم (به این ‌ها مقادیر ویژه گفته می شود) در این صورت مسأله مقدار مرزی جواب غیربدیهی دارد و به این جوابها توابع ویژه می گوئیم .

در مسائل مقدار مرزی ثابتهای دلخواه در جواب از روی شرایط مرزی که در بیشتر از یک نقطه باشند بدست می آید . بنابراین امکان دارد که بیشتر از یک جواب داشته باشیم یا هیچ جوابی نداشته باشیم .

قضیه (1-1-1) : مسأله مقدار مرزی زیر را در نظر بگیرید :

 

و فرض کنید که f  در ناحیه R پیوسته می باشد .

  ,

همچنین f در شرط لیپ شیتز صدق می کند یعنی :

 

 

برای هر

در مجموع فرض کنید f در ناحیه R در شرایط زیر صدق می کند :

 

( ثابت) و همچنین برای شرایط مرزی مسأله فرض کنید :

 

آنگاه مسأله مقدار مرزی (BVP) داده شده یک جواب منحصر بفرد دارد . [2]



دانلود با لینک مستقیم


تحقیق درباره تحقیق درباره آشنایی با مسائل مقدار مرزی