فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود تحقیق تشخیص نفوذهای غیر عادی در بستر شبکه با تشخیص outlier هایی که از قبل بررسی نشده اند

اختصاصی از فی توو دانلود تحقیق تشخیص نفوذهای غیر عادی در بستر شبکه با تشخیص outlier هایی که از قبل بررسی نشده اند دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق تشخیص نفوذهای غیر عادی در بستر شبکه با تشخیص outlier هایی که از قبل بررسی نشده اند


دانلود تحقیق تشخیص نفوذهای غیر عادی در بستر شبکه با تشخیص outlier هایی که از قبل بررسی نشده اند

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه: 24

 

چکیده :

تشخیص ناهنجاری (anomaly) موضوعی حیاتی در سیستم های تشخیص نفوذ به شبکه است (NIDS) [1] . بسیاری از NIDS های مبتنی بر ناهنجاری «الگوریتمهای پیش نظارت شده » [2] را بکار می گیرند که میزان کارایی این الگوریتمها بسیار وابسته به دادها های تمرینی عاری از خطا میباشد . این در حالی است که در محیط های واقعی و در شبکه های واقعی تهیه اینگونه داده ها بسیار مشکل است . علاوه بر اینها ، وقتی محیط شبکه یا سرویسها تغییر کند الگوهای ترافیک عادی هم تغییر خواهد کرد .

این مساله به بالا رفتن نرخ مثبت نمایی [3] در NIDS های پیش نظارت شده منجر می شود . تشخیص یک انحراف کامل (outlier) پیش نظارت نشده میتواند بر موانعی که در راه تشخیص ناهنجاری های پیش نظارت شده وجود دارد غلبه کند . به همین دلیل ما الگوریتم « جنگلهای تصادفی » [4] را که یکی از الگوریتمهای کار امد برای استخراج داده است به خدمت گرفته ایم و آن را در NIDS های مبتنی بر ناهنجاری اعمال کرده ایم . این الگوریتم میتواند بدون نیاز به داده های تمرینی عاری از خطا outlier ها را در مجموعه داده های [5] ترافیک شبکه تشخیص دهد . ما برای تشخیص نفوذهای ناهنجار به شبکه از یک چارچوب کاری استفاده کرده ایم و در این مقاله به شرح همین چارچوب کاری میپردازیم .

در این چارچوب کاری ، الگوی سرویسهای شبکه از روی داده های ترافیکی و با استفاده از الگوریتم جنگلهای تصادفی ساخته شده است . توسط outler تعیین شده ای که با این الگوهای ساخته شده مرتبط هستند نفوذها تشخیص داده می شوند. ما نشان میدهیم که چه اصلاحاتی را روی الگوریتم تشخیص outlier جنگلهای تصادفی انجام دادیم . و همینطور نتایج تجربیات خود را که بر اساس مجموعه داده های KDD 99 انجام شده است گزارش میدهیم .

نتایج نشان میدهد که روش پیشنهادی با سایر روشهای تشخیص ناهنجاری پیش نظارت نشده ای که قبلا گزارش شده اند کاملا قابل مقایسه است . البته روشهایی که بر اساس مجموعه داده های KDD 99 ارزیابی شده اند.

1- معرفی

همراه با رشد فوق العاده زیاد سرویسهای مبتنی بر شبکه و وجود اطالعات حساس روی شبکه ها تعداد حملات به کامپیوترهای تحت شبکه و شدت انها نیز به طور محسوسی افزایش یافته است . در حال حاضر طیف وسیعی از تکنولوژیهای امنیتی وجود دارد که میتوانند از سیستم های تحت شبکه محافظت کنند . تکنولوژیهایی مانند رمز نگاری اطلاعات کنترل دسترسیها و جلوگری از نفوذ اما با وجود این تکنولوژیها هنوز هم راههای زیادی برای نفوذ وجود دارد که تا حلل شناسایی نشده است . به همین دلیل سیتسم های تشخیص نفوذ IDS نقشی حیاتی را در امنیت شبکه ایفا می کنند .

سیستم های تشخیص نفوذ به شبکه NIDS فعالیتهای مختلفی که در شبکه انجام می شود را تحت نظر دارد و از این راه حملات را شناسایی می کند . این در حالی است که سیستم های تشخیص نفوذ به سیستم های تحت Host یعنی HIDS نفوذ به یک host منفرد را شناسایی می کند.

دو تکنیک اصلی برای تشخیص ورودهای نابجا وجود دارد . تشخیص کاربردهای نادرست[6]  و تشخیص ناهنجاری anomaly تشخیص کاربردهای نادرست بر اساس الگوهای استخراج شده از نفوذهای شناخته شده حملات را کشف می کند . در روش تشخیص ناهنجاری برای شناسایی حملات به این روش عمل می کند که یکسری پروفایلهایی را برای فعالیتهای عادی ایجاد می کند و سپس بر اسسا این پروفایلها موارد انحراف را تعیین می کند . فعالیتهایی که از حد تعیین شده برای انحرافات فراتر رود جزء حملات شناخته می شوند .

در تکنیک تشخیص کاربردهای نادرست نرخ مثبت نمایی پائین است . اما این تکنیک نمی تواند حملاتی از انواع جدید را شناسایی کند . تکنیک تشخیص ناهنجاری میتواند حملات ناشناخته را کشف کند با این پیش فرض که این حملات ناشی از منحرف شدن از رفتارهای عادی هستند.

در حال حاضر بسیاری از NIDS  ها مانند Snort سیستمهای قانونمند شده هستند ، به این معنی که این سیستم ها تکنیکهای تشخیص کاربردهای نادرست را به خدمت میگیرند و بنابراین قابلیت انبساط محدودی برای حملات جدید دارند . برای شناسایی حملات جدید سیستمهای تشخیص ناهنجاری بسیاری توسعه پیدا کرده اند . بسیاری از انها بر مبنای روشهای نظارتی توسعه پیدا کرده اند . به عنوان مثال ADAM در تشخیص نفود ، از الگوریتم قوانین مشترک بهره گرفته است ADAM از فعالیتهای عادی که روی داده های تمرینی عاری از حمله انجام می شود یک پروفایل می سازد .

سپس با پروفایل ساخته شده حملات را شناسایی می کند . مشکل ADAM این است که به داده های تمرینی که برای فعالیتهای عادی استفاده می شوند بیش از حد وابسته است . وقتی که در دنیای واقعی با شبکه های حقیقی کار می کنیم عملا هیچ تضمینی نیست که بتوانین از تمامی حملات جلوگیری کنیم . بنابراین دست یافته به داده های تمرینی عاری ازخطا کار بسیار مشکلی است . در حقیقت هم یکی از مرسوم ترین راههایی که برای تحلیل بردن یک سیستم IDS مبتنی بر ناهنجاری استفاده می شود این است که بخشی از فعالیتهای نفوذی را درون داده های تمرینی وارد کنیم . IDS هایی که با این داده های تمرینی تعلیم دیده اند قابلیت شناسایی این نوع از نفوذها را از دست میدهند .

مشکل دیگر IDS های مبتنی بر نظارت بر رفتارهای ناهنجار این است که وقتی محیط شبکه یا سرویسها تغییر می کند نرخ مثبت نمایی بالا میرود . از انجایی که داده های تمرینی فقط فعالیتهای مطالعه شده را شامل می شود پروفایل مربوط به فعالیتهای عادی فقط شامل الگوهای مطالعه شده ای است که از روی رفتارهای عادی برداشته شده اند . بنابراین فعالیتهای جدید ناشی از تغییر محیط شبکه یا سرویسها از پروفایلی که قبلا ساخته شده تبعیت نمی کند و به عنوان حمله شناسایی می شوند . این مساله باعث بالا رفتن مثبت نمایی ها خواهد شد .

برای غلبه بر محدودیتهای سیستم های مبتنی بر ناهنجاری های نظارت شده تعدادی از IDS ها از روشهای غیر نظارتی استفاده می کنند . در تکنیک تشخیص ناهنجاری به صورت غیر نظارتی نیازی به داده های تمرینی عاری از خطا نیست . این تکنیک برای شناسایی حمله ها به این ترتیب عمل می کند که فعالیتهای غیر معمول داده ها را تعیین می کند . برای این کار دو پیش فرض دارد :

  • اکثر فعالیتها عادی هستند
  • بر طبق امار اغلب حمله ها با منحرف شدن از فعالیتهای عادی صورت می گیرد.

فعالیتهای غیر معمول همان انحرافهای کامل ( Outlier) هستند که با مجموعه داده های باقیمانده جور در نمی ایند . بنابراین تکنیکهای تشخیص Outlier می توانند روی سیستم هایی که ناهنجاریها را به صورت غیر نظارتی تشخیص می دهند اعمال شوند . در واقع هم اکنون هم تشخیص Outlier در تعدادی از برنامه های عملی مانند شناسایی کردیت کارتهای تقلبی و پیش بینی وضع هوا در حال استفاده است .

ما روشی را پیشنهاد می کنیم که برای تشخیص نفوذهای غیر عادی از تکنیک تشخیص outlier ی که توسط الگوریتم جنگلهای تصادفی تهیه شده است استفاده می کند . جنگلهای تصادفی روشی است که در میان الگوریتمهای استخراج داده موجود تقریبا پیشتاز است .

 این الگوریتم تا کنون در برنامه های مختلف بسیار زیادی استفاده شده است . برای مثال در برنامه پیشگویی نظریه احتمالات تجزیه الگو در بازیابی اطلاعات چند رسانه ای مورد استفاده بوده است. متاسفانه تا جایی که ما اطلاع دارمی تا کنون این الگوریتم را در سیستم های تشخیص نفوذهای غیر عادی بکار نبرده اند .

دغدغه اصلی سیستمهای تشخیص نفوذهای غیر عادی این است که مثبت نمایی ها را به حداقل برسانند . تکنیک تشخیص outlier برای کاهش نرخ مثبت نمایی و ارائه یک نرخ شناسایی مطلوب و قابل قبول موثر خواهد بود . روش پیشنهادی توسط مجموعه داده KDD99 ارزیابی شده است .

این مجموعه داده برای سومین مسابقه بین المللی ابزارهای استخراج داده و اکتشاف دانش مورد استفاده بوده است . نتایج تجربیات ما نشان می دهد که میزان کارایی تکنیک تشخیص با روش پیشنهادی ما یعنی تکنیک تشخیص outlier به طور موثری بهبود پیدا کرده است .

این مقاله به این صورت تنظیم شده است . در بخش دوم ما کارهای مربوطه را شرح می دهیم در بخش سوم به صورت تفصیلی روش تشخیص outlier با استفاده از الگوریتم جنگلهای تصادفی را شرح می دهیم . در بخش چهارم تجربیات و ارزیابی های انجام شده برای تعیین میزان کارایی نشان داده می شود . و در اخر در بخش پنجم مقاله را خلاصه می کنیم و طرح تحقیقات آتی خود را مشخص می کنیم .

2- کارهای مربوطه

یکی از موضوعهای مهمی که در تحقیقات مربوط به تشخیص نفوذها وجود دارد ، تشخیص ناهنجاری بوده تا کنون روشهای بسیار متنوعی برای تشخیص ناهنجاری پیش نظارت نشده در NIDS ها یک موضوع تحقیقاتی جدید است اسکین [7] در موضوع تشخیص ناهنجاری نظارت نشده ، سه الگوریتم را بررسی کرده است : تخمین بر مبنای کلاستر [8] ، نزدیکترین همسایه [9] و SVM [10] تک کلاسی . سایر محققان در NIDS های غیر نظارتی روشهای کلاسترینگ را اعمال کرده اند.

سیستم تشخیص ناهنجاریهای پیش نظارت شده در طیف وسیعی مورد مطالعه قرار گرفته است . در همین مبحث ، ADAM[11] پروژه ای است که در عرصه وسیعی شناخته شده و منتشر شده است . این پروژه یک online IDS در بستر شبکه است . ADAM میتواند به همان خوبی که حملات شناخته شده را تشخیص میدهد حملات ناشناخته را هم تشخیص دهد .

به این ترتیب که از رفتارهای عادی مربوط به داده های تمرینی عاری از خطا پروفایل میسازد و این پروفایل را به عنوان یک مجموعه قوانین مشترک ارائه می کند. در زمان اجرا با توجه به این پروفایل ، تماسهای مشکوک را شناسایی می کند . روشهای پیش نظارت شده دیگری هم بر سیستم های تشخیص ناهنجاری اعمال شده اند . روشهایی نظیر الگوریتم ژنتیک و استخراج داده های مبهم و نامعلوم ، شبکه های عصبی و SVM .

در کار قبلی مان ، ما الگوریتم جنگلهای تصادفی را در سیستم تشخیص کاربردهای نادرست misuse اعمال کردیم . در این مقاله تابع تشخیص outlier تهیه شده توسط الگوریتم جنگلهای تصادفی را برای تشخیص ناهنجاری پیش نظارت نشده به خدمت گرفته ایم . دقت و تاثیر این الگوریتم روی مجموعه داده های برگی که دارای ویژگیهای زیادی هستند بیشتر است . مجموعه داده هایی نظیر مجموعه داده های ترافیک شبکه.

3- تشخیص Outlier ها

در این بخش ما چارچوب کاری پیشنهادی برای NIDS را شرح میدهیم و نشان میدهیم که چگونه از این الگوریتم برای تشخیص outlier های روی مجموعه داده ای ترافیک شبکه استفاده می کنیم .

الف – شرح چارچوب کاری

چارچوب کاری پیشنهادی برای تشخیص نفوذهای نوظهور از الگوریتم جنگلهای تصادفی استفاده می کند . چارچوب کاری در شکل 1 نمایش داده شده است.

شکل 1- چارچوب کاری NIDS ناهنجاری پیش نظارت نشده

NIDS از ترافیک شبکه تصویر بردار یمی کند و با پیش پردازش کردن مجموعه داده ها را میسازد . سپس با استفاده از الگوریتم ف از روی مجموعه داده الگوهایی بر مبنای سرویسها ساخته می شود . با الگوهای ساخته شده می توانیم outlier های مربوط به هر الگو را پیدا کنیم . وقتی outlier ها شناسایی شدند سیستم یک اخطار تولید می کند .

بعد از اینکه تصویر برداری از ترافیک شبکه انجام شد پردازش به صورت off-line ادامه خواهد یافت . زیرا الگوریتم تشخیص outlier نیازمندیهای زیادی برای محاسبات لازم دارد . به همین دلیل هم در محیطهای واقعی شبکه پردازشهای online مناسب نیست

این فقط قسمتی از متن مقاله است . جهت دریافت کل متن مقاله ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود تحقیق تشخیص نفوذهای غیر عادی در بستر شبکه با تشخیص outlier هایی که از قبل بررسی نشده اند

پاورپوینت درباره استانداردهای امدادی در بلایا و حوادث غیر مترقبه

اختصاصی از فی توو پاورپوینت درباره استانداردهای امدادی در بلایا و حوادث غیر مترقبه دانلود با لینک مستقیم و پر سرعت .

پاورپوینت درباره استانداردهای امدادی در بلایا و حوادث غیر مترقبه


پاورپوینت درباره استانداردهای امدادی در بلایا و حوادث غیر مترقبه

فرمت فایل : power point  (لینک دانلود پایین صفحه) تعداد اسلاید  : 28 اسلاید

 

 

 

 

 

 

 

خلاصه :

حوادث و بلایای غیر مترقبه عملی است که وضعی فاجعه انگیز در زندگی عادی و روزمره مردم ایجاد می نماید . در این وضع شیرازه زندگی روزمره ناگهان گسیخته شده و مردم دچار رنج و درماندگی می شوند. و در نتیجه به غذا ،‌پوشاک ، سر پناه، مراقبت های بهداشتی ، پزشکی و پرستاری و سایر ضروریات زندگی به محافظت در مقابل عوامل و شرایط نامساعد محیط محتاج گردند.
بنابراین جهت جلوگیری ازعواقب بهداشتی ناشی از این تغییر و تحول ودرهم ریختگی اوضاع زندگی مردم نیاز به یک سری استانداردها جهت بهبود وضعیت زندگی از جمله استانداردهای لازم جهت سرپناه ، تامین آب بهداشتی ، تغذیه مناسب ،‌ دفع بهداشتی زباله و مدفوع ،  و .... نیاز می باشد در این مقاله سعی شده ضمن بررسی بعضی بلایا و حوادث طبیعی و ساخته دست بشربه استانداردهای مورد نیاز هنگام وقوع اینگونه بلایا پرداخته شود .

دانلود با لینک مستقیم


پاورپوینت درباره استانداردهای امدادی در بلایا و حوادث غیر مترقبه

تحقیق در مورد چربی اشباع و غیر اشباع

اختصاصی از فی توو تحقیق در مورد چربی اشباع و غیر اشباع دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد چربی اشباع و غیر اشباع


تحقیق در مورد چربی اشباع و غیر اشباع

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه10

چربی اشباع و غیر اشباع چیست؟

چربی ها دو نوع هستند: اشباع و غیر اشباع. هر دوی این چربی ها به ازای هر یک گرم، 9 کالری انرژی تولید می کنند. ولی اثرات این دو بر روی کلسترول خون متفاوت می باشد.

چربی اشباع که جامد است، در غذاهای حیوانی و غذاهای فن آوری شده و روغن بعضی از مواد گیاهی از قبیل: روغن خرما، روغن نارگیل و کره کاکائو یافت می شود. این چربی باعث افزایش کلسترول بد می شود و کلسترول وارد خون می گردد.

چربی غیر اشباع در روغن زیتون، گردو، آجیل، غذاهای دریایی و تخم مرغ یافت می شود. این چربی برعکس چربی اشباع، باعث کاهش تری گلیسیرید ها (اسیدهای چرب) و افزایش کلسترول خوب و کاهش کلسترول بد می گردد و به این طریق کلسترول وارد کبد می شود.

چربی های اشباع در دمای معمولی جامد، ولی چربی های غیر اشباع در دمای معمولی مایع هستند.

چربی غیر اشباع برای ساخت سلول های مغز، سلامت قلب و نیز برای اعصاب چشم خوب می باشد.

در حدود 20 سال پیش، محققان یکی از انواع چربی های غیر اشباع را یافتند و آن را " امگا 3 " نامیدند و چون این چربی در بدن ساخته نمی شود، به همین خاطر یکی از چربی های ضروری برای بدن است.

امگا 3 موجب کاهش چربی و فشار خون می شود و جلوی ضربان نامنظم قلب را می گیرد.

امگا 3 در تن ماهی، ماهی ساردین ، ماهی سالمون و تخم مرغ و.... می باشد.

می دانید که چرا چربی غیر اشباع مفید برای سلامت است؟

این نوع چربی افسردگی و آلزایمر و سرطان سینه را دور می کند، جلوی تنگی تنفس را می گیرد، عوارض خونی در دیابتی ها را کم کرده، باعث تقویت سیستم ایمنی می شود و با بیماری ها می جنگد.

گذشته از این، جلوی ضربات تشنج را گرفته و باعث سلامت قلب ، عصب و عضله می شود.

اگر کودک شما فعالیت زیادی دارد به طوری که شما را عاصی کرده است ، هیچ نگران نباشید و به او یکی از منابع چربی غیر اشباع را بدهید.

اگر این چربی را به زنانی که زودتر از موقع زایمان می کنند بدهیم، از کمبود وزن بچه جلوگیری کرده و همین طور موجب افزایش رشد مغز بچه می شود.


دانلود با لینک مستقیم


تحقیق در مورد چربی اشباع و غیر اشباع

تکثیر غیر جنسی در رابطه با اصلاح با جهش

اختصاصی از فی توو تکثیر غیر جنسی در رابطه با اصلاح با جهش دانلود با لینک مستقیم و پر سرعت .

تکثیر غیر جنسی در رابطه با اصلاح با جهش


تکثیر غیر جنسی در رابطه با اصلاح با جهش

تکثیر غیر جنسی در رابطه با اصلاح با جهش

73 صفحه

 

پرتوتابی پیازها، ریزوم ها، قلمه گیاه، پیوندها و قسمتهای دیگر گیاه یا تمام گیاهان دارای جوانه با رأسهای چند سلولی که از تعدادی از لایه های سلولی نسبتاً مستقل تشکیل شده است، بطور خودکار به سمت تشکیل شمیر راهنمایی می کند. پرتوتابی جوانه های شمیرهای مری کلینال در بخش کوچک تولید می کنند. و شانس بهبود جهشهای القا شده از اینها نسبتا پائین هستند. این مانع اصلی در اصلاح بطریق جهش است، بویژه در گونه هایی که از نظر رشد شناسی مرحله جوان جوانه زنی که پرتوتابی شده باشد وجود ندارد.

موقعیت ایده ال برای یک گیاه یا قسمتی آن اینست که از یک سلول در محیط این دیترو یا این ویوو یا از یک یا تعدادی از سلولهای دفتری رویشی از سلول جهش یافته، منشا گرفته باشد. در این حالت تشکیل شمیر اجتناب می شود.


دانلود با لینک مستقیم


تکثیر غیر جنسی در رابطه با اصلاح با جهش

دانلود پاورپوینت طرح ریزی محل شرکت و انگیزه های کارکرد غیر مالی

اختصاصی از فی توو دانلود پاورپوینت طرح ریزی محل شرکت و انگیزه های کارکرد غیر مالی دانلود با لینک مستقیم و پر سرعت .

پاورپوینت طرح ریزی محل شرکت و انگیزه های کارکرد غیر مالی  در 40 اسلاید شامل بخش های زیر می باشد:

 تأثیر پیوسته روی کارکرد شرکتی

مقدمه

طرح ریزی محل شرکت

شاخص های کارکرد غیر مالی

سبک پژوهش

معیارها

متغیرهای وابسته

متغیرهای مستقل

متریک تا NFP

متریک ERP – NFPJ

متغیرهای کنترل

بحث

 

 

 

 

تأثیر پیوسته روی کارکرد شرکتی

برخی پژوهشها  نشان می‌دهد که اجرای سیستم‌های طرح ریزی محل شرکت EPR بهبود‌دهنده کارکرد شرکت است در صورتیکه پژوهش دیگری نشان می‌دهد که مشمول انگیزه های کارکرد غیر مالی NFPI در قرردادهای جبرانی اجرائی نیز افزایش دهنده کارکرد است . چون سیستم های EPR طراحی می‌شوند برای تغییر شاخص های کارکرد کلیدی در طبیعت بطور مالی و غیرمالی هستند . سوال پژوهش اولیه که دراینجا آزمایش شد می پرسد ، آیا پذیرش پیوسته EPR و استفاده NFPI حاصل دهنده تاثیر همکاری کننده روی کارکرد شرکتی است؟

در مطالعه جاری ، کارکرد توسط برگشت روی سرمایه ها ROA و برگشت کالاهای ROS منعکس می‌شود . روی هم رفته نتایج مطالعه نشان می دهد که استفاده ترکیبی EPR و NFPI بطور چشمگیر ROA بالاتر کوتاه مدت و دراز مدت و ROS را نسبت به شرکت‌های فقط EPR می‌دهد و ROA و ROS کوتاه مدت و ROS بلند مدت نسبت به شرکتهای فقط NFPI یافته های پژوهش پیشنهاد کننده بینش‌های با ارزش در قالب اشارات تئوریک وعملی پذیرش پیوسته EPR و NFPI است .

مقدمه

سیستمهای طرح ریزی محل شرکت EPR تبدیل کننده فرآیندهای تجارتی و تکنولوژیهای اطلاعات به رشته همزمان رویه‌ها ، کاربردها و متریک‌ها است که محدودیت ها و مرزهای بین تجارتی و درون شرکت تجارتی را می سنجد . سیستم‌های EPR انتظار می‌روند که بهبود دهنده کارکرد روی همرفته شرتک است ابتدا بدلیل فرایندهای تجاری مجدداً طرح شده ، عملکردهای تجارتی یکپارچه ، سیکل‌های گزارش شتابدار و تواناییهای توسعه یافته اطلاعات . با ملاحظه مورد آخری ، سیستم های EPRنه تنها فراهم کننده متریک‌های مالی مرسوم برای تصمیم گیرندگان هستند ، بلکه توانای پیشنهاد شاخص های کارکرد غیر مالی نیز می‌باشد ...


دانلود با لینک مستقیم


دانلود پاورپوینت طرح ریزی محل شرکت و انگیزه های کارکرد غیر مالی