فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله پیشرفت علم ریاضیات در تمدن اسلامی

اختصاصی از فی توو دانلود مقاله پیشرفت علم ریاضیات در تمدن اسلامی دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله پیشرفت علم ریاضیات در تمدن اسلامی


دانلود مقاله پیشرفت علم ریاضیات در تمدن اسلامی

 

مشخصات این فایل
عنوان: پیشرفت علم ریاضیات در تمدن اسلامی
فرمت فایل: word( قابل ویرایش)
تعداد صفحات: 17

این مقاله درمورد پیشرفت علم ریاضیات در تمدن اسلامی می باشد.

خلاصه آنچه در مقاله پیشرفت علم ریاضیات در تمدن اسلامی می خوانید :

ریاضیدانان مسلمان قرن سوم هجری:
الف) محمدبن موسی خوارزمی (متوفی 232 ق): در واقع ریاضیات اسلامی با خوارزمی آغاز می‌شود. خوارزمی در ریاضیات متأثر از تعالیم مکتب جندی شاپور و ریاضیات هندی بود. آلدومیلی درباره‌ی خوارزمی می‌گوید: «خوارزمی نه تنها در اسلام و شرق بلکه در مغرب زمین نیز از مشهورترین می‌باشد.خوارزمی در ریاضیات عصر جدیدی بوجود آورد و کتابهای او بی نظیر است.» (سامی:1365: 366) خوارزمی که مدرس عصر مأمون عباسی (متوفی 218 ق) به شمار می‌رود در واقع مبدع علم جبر در ریاضیات بود. کتاب جبر ومقابله‌ی او شامل مطالبی همچون قواعد حل معادلات درجه‌ی اول و دوم و اثبات هندسی آن، قواعدی درباره‌ی چهار عمل اصلی وجذر و سطوح و حجم ها می‌باشد. لازم به ذکر است جبر به معنای کاستن و مقابله به معنای افزودن به دو طرف معادله است تا با هم برابر شوند. خوارزمی قواعد حل معادلات را شرح داده وآن را به صورت هندسی مطرح کرده است. زوزمن خوارزمی را بزرگترین ریاضیدان و منجمی بی بدیل دانسته و می‌گوید: «کار اصلی او راجع به معادلات درجه ی دوم بود؛ازتقاطع مخروطی مسائل جبری را حل می‌نمود، معادلات درجه سوم را طبقه بندی کرد و برای هر یک راه حل هندسی ایجاد نمود.»(قدیانی:1381: 274-275) قدیم ترین جداول محاسبات مثلثات توسط خوارزمی نگاشته شد. وی سینوس را جایگزین وترهای قوس کرد. او به دو تقریب 10√ و 1416/3 درباره‌ی عدد پی (π) رسیده بود. ریاضات خوارزمی از طریق ژربر در دانشگاه اسلامی قرطبه و از طریق لئورناردو در سیسیل، ریاضیات غرب را زیرورو کرد. لئورناردو فیبوناتسی، از جبردانان برجسته غرب، در علم جبر خود را مدیون اعراب می‌داند. وی درکتاب جبر خود به نام (لیبراباکی)، شش قسمت از معادلات درجه‌ی دوم را عیناًمانند خوارزمی ذکر کرده است. فیبوناتسی در کتاب خود از اعداد هندی-عربی و عدد صفر سخن گفته است در واقع تألیفات او زیربنای پیشرفت ریاضیات در اروپا محسوب می‌شود. (محمدی:1373: 278) کتاب جبرومقابله‌ی خوارزمی، نخستین بار توسط رابرت چستر انگلیسی، در سال 1145 م، به لاتین ترجمه شد و لفظ الجبر به اروپا راه یافت. جرارد کرمونایی هم در همان قرن، این کتاب را در اسپانیا به لاتین ترجمه کرد. کتاب جبر خوارزمی تا زمان فرانسوا ویت (متوفی 1603 م) مبنای مطالعات ریاضی اروپاییان بوده است. آخرین ترجمه‌ی این کتاب در سال 1866 م توسط پرفسور مار و در رم منتشر شد و کارپیوسکی در سال 1915 م ترجمه‌ی رابرت چستر را منتشر کرد. لازم به ذکر است که رونویسهای کتاب جبر خوارزمی در سال 1143 م به آلمان برده شد. اروپاییان به دنبال ریشه‌ی کلمه الگوریتم بودند تا این که رایناند فرانسوی در سال 1845 م، رابطه‌ی اسمی الگوریتموس و الخوارزمی را کشف کرد.

در واقع با ترجمه‌ی کتاب (سند هند) توسط الفزاری به عربی، مسلمین در عهد منصور عباسی (متوفی 158 ق) با نقش عدد صفر، آشنا شدند و می‌توان گفت که خوارزمی با تکیه بر این کتاب، کتاب معروف (الجمع و التفریق بحساب هند) را نگاشت. این کتاب خوارزمی، توسط آدلارد باثی و جرارد کرمونایی در قرن دوازده میلادی به لاتین ترجمه شد و شمارش هندی- عربی وارد اروپا شد. (ولایتی:1384: 274) کتاب (الجمع و التفریق بحساب الهند) توسط ریموند، اسقف اعظم طلیطله هم به لاتین ترجمه شد. ریموند این کتاب را تحت عنوان (ارقام هندی الخوارزمی) ترجمه کرد و سیستم اعداد خوارزمی را جانشین محاسبات ژربر نمود. در نتیجه اصطلاح الگوریتم (الگوریسم) و صیفر (صفر) توسط آثار خوارزمی، وارد زبان اروپایی شد.
از دیگر مترجمان آثار خوارزمی می‌توان به ژان لونا، یوحنا الاسبانی، رودولف دو برجس و پیر آلفونس اشاره کرد. در پایان این مبحث، بهتر است نظر کارا دو وو درباره ارقام هندی یا عربی مطرح شود. او میگوید درست است که خود اعراب هم اعداد مورد استفاده شان را هندی می‌دانند، ولی باید توجه داشت که ممکن است کلمه‌ی هندسی، به اشتباه هندی نگارش شده باشد و مقصود اعداد هندسی بوده باشد نه هندی. (سیزده نفر از مستشرقین:1325: 301-302) هر چند این نظر دوو نمی‌توان قطعی تلقی کرد، ولی باید دانست بر سر این که این اعداد واقعاً هندی است یا عربی، اختلافی بسیار است و مباحث زیادی صورت گرفته است. به هر حال حتی اگر این شمارش اعداد رایج، هندی باشد، باز توسط مسلمین پروریده و در جهان منتشر شده است.

ب) احمد بن عبدالله مروزی: کهن ترین جداول توابع مثلثاتی، توسط احمد بن عبدالله مروزی، معروف به حبش حاسب، مطرح شد. وی از منجمان بزرگ دربار مأمون (متوفی 218 ق) و معتصم عباسی (متوفی 227 ق) بود و در نیمه‌ی اول قرن سوم هجری به کارهای علمی می‌پرداخت. حبش حاسب، برای نخستین بار از ظل (تانژانت) استفاده کرد. ظاهرا وی از کاربرد جیب (سینوس)، تمام جیب (کسینوس) و ظل تمام (کتانژانت) هم آگاهی داشت. (محمدی:1373:275) نسخه‌های خطی آثار مروزی، در استانبول و برلین موجود است.
ج) ابو معشر بلخی (متوفی 272 ق) و ابوحنیفه دینوری (متوفی 282 ق):ابومعشر بلخی، گذشته از تبحر در نجوم، ریاضیدان هم بود و بسیاری از آثار او به لاتین ترجمه شده است. امروزه بسیاری از تألیفات وی در حوزه‌ی نجوم و ریاضی، در کتابخانه‌های اروپا موجود است. ابو حنیفه دینوری، در اخترشناسی، تاریخ، زیست و ریاضیات تبحر داشته است و در ریاضیات کتابهایی مانند (الجبر و المقابله) و (البحث فی الحساب الهند) نوشته که اغلب کتاب‌های او در اروپا منتشر شده است.

) خاندان موسی بن شاکر (بنی موسی): پسران موسی بن شاکر، از دانشمندان بزرگ قرن سوم هجری بودند. محمد بن موسی، پسر اول، در هندسه و نجوم شهرت داشت و اقلیدس و مجسطی را خوب میدانست. برادر دوم، احمد بن موسی، ریاضیدان وفیزیکدان بود و شهرت حسن بن موسی، برادر سوم، در هندسه بودحسن بن موسی –که گاهی نام او با حسن بن موسی خوارزمی، اشتباه شده است- نخستین کسی بود که به تلفیق هندسه‌ی عددی وفضایی پرداخت. (هونکه:1370: 189) نباید از این نکته غافل شد که بنی موسی در علم فیزیک و مکانیک هم سرآمد بودند. بنی موسی ثروت خود را صرف جمع آوری نسخ خطی یونانی و ترجمه آن ها کردند و مترجمان بزرگی چون اسحاق بن حنین و ثابت بن قره را به خدمت گرفتند. ابوریحان بیرونی در آثار خود از پسران موسی نام برده است. (حقیقت:1378: 355) نخستین پرگار توسط بنی موسی ابداع شد. آنان در علم هندسه، کتاب (معرفة مساحة الاشکال البسیطه و الکریه) را نگاشتند که تأثیر زیادی برعلمای هندسه‌ی غرب، در قرون وسطی داشت. (کاشفی:1387: 143) پسران موسی در این کتاب، مساحت‌های چند ضلعی منتظم محیطی و محاطی، مساحت دایره و مقدار عدد پی (π)، مساحت مثلث و حجم مخروط و کره و تثلیث زاویه را مطرح کرده اند و خودشان عنوان نموده اند که به جز محاسبه‌ی عدد پی، تمامی این مطالب از ابداعات خودشان بوده است. کتاب (مساحة الاشکال)، در قرن دوازده میلادی، توسط جرارد کرمونایی، به لاتین ترجمه شد که این ترجمه در سال 1885 م منتشر شد. این کتاب، همچنین، درسال 1902 م توسط سوتر به آلمانی ترجمه گردید. بنی موسی کتابی در ریاضیات تألیف کردند که در سده‌های میانه درباختر زمین ترجمه شد. نام این کتاب، (قسمة الزاویه الی ثلاثة اقسام متساویة) بود که نخستین ترجمه آن توسط کرمونایی صورت گرفت. (محمدی:1373: 277) این سه دانشمند بزرگ، کتاب مخروطات آپولونیوس را هم، ترجمه، تصحیح و تسهیل نمودند که این رساله‌ی ترجمه‌ی آنان، بارها به لاتینی و انگلیسی در ارپا ترجمه شد و منتشرگردیده است.

ه) ثابت بن قره (متوفی 288 ق): ثابت بن قره، حرانی و از صابئین بود. او توسط محمد بن موسی شاکر به دربار خلیفه‌ی عباسی راه یافت و از بزرگترین مترجمان نهضت ترجمه به زبان عربی گردید. او آثار ریاضیدانان یونانی، مانند ارشمیدس، بطلمیوس، نیکوماخوس و فیثاغورس را به عربی ترجمه کرد. وی همچنین مترجم مخروطات آپولونیوس و اصول اقلیدس بود در واقع ثابت بن قره را اقلیدس اعراب نامیده اند. (هونکه:1370: 192) وی در بیان اعداد کامل، یعنی اعدادی که مجموع مقسوم علیه‌های آن برابر با خود عدد است، و نیز اعداد متحاب، یعنی اعدادی که جمع مقسوم علیه‌های آن برابر با دیگری است، بسیار پیشرفت کرده بود. او به حساب انتگرال دست یافت و هندسه و جبر را به هم مرتبط ساخت. همچنین درباره‌ی «بی نهایت»تحقیق کرد و آن ها را قسمت‌هایی از بی نهایت دیگر به شمار آورد. مثلاً مجموعه‌ی بی نهایت اعداد زوج را قسمتی از کل اعداد محسوب نمود. (گارودی:1364: 110) ثابت بن قره به راه حل هندسی برخی از اشکال معادله‌ی درجه سوم و حجم سهمی دست یافت. کتاب سایه‌ی شاخص یا ساعت آفتابی، اثر ثابت بن قره، نخستین کتاب در این باره است. این دانشمند و مترجم بزرگ، در قرون وسطی، شهرت فراوانی در اروپا داشت. جیر لامو کاردان، دانشمند ایتالیایی در قرن شانزده میلادی، از روش معادلات او در حل معادلات درجه سوم بهره گرفت و این موضوع را به طور آشکار در کتابش بیان نمود. اسمیت در کتاب تاریخ ریاضیات خود می‌گوید: «سزاوار است که اینجا یادی از ثابت بن قره بمیان آوریم، وی کسی است که قاعدۀ حجم جسم حاصل از گردش مقاطع مخروطی حول محورش را وضع کرد» (نوفل: 1351: 203-204) در هر حال ثابت بن قره از بزرگترین هندسه دانان عرب بود که در اروپا مشهور و مورد تحسین همه است. او کتابهای بسیاری درباره‌ی نجوم، هندسه، جاذبه، جراثقال و علوم دیگر نوشته است که ترجمه‌ی لاتینی آن ها موجود است.
و) ابوالعباس نیریزی (متوفی 309 ق): ابوالعباس فضل بن حاتم، اهل نیریز فارس و از اختر شناسان و ریاضیدانان مشهور عصر عباسی، به ویژه در دوره‌ی معتضد (متوفی 289 ق) بود. وی شارح المجسطی بطلمیوس وآثار اقلیدس بود. از آثار مهم این ریاضیدان، کتاب (سمت القبله) است. آثار نیریزی به لاتین ترجمه است. شرحی که نیریزی بر اصول اقلیدس نوشت، در قرن دوازده میلادی توسط کرمونایی ترجمه شد. توماس هیس هم این شرح را به همراه متن اصلی اقلیدس، در اواخر قرن نوزده میلادی منتشر کرد. کورز هم در سال 1899 م، ترجمه‌ی کرمونایی از شرح اصول اقلیدس را چاپ و منتشر نمود.

بخشی از فهرست مطالب مقاله پیشرفت علم ریاضیات در تمدن اسلامی

چکیده
مقدمه
ریاضیدانان مسلمان قرن سوم هجری:
ریاضیدانان مسلمان قرن چهارم هجری:
نتیجه:
پی نوشت ها:


دانلود با لینک مستقیم


دانلود مقاله پیشرفت علم ریاضیات در تمدن اسلامی

دانلود مقاله ریاضیات گسسته

اختصاصی از فی توو دانلود مقاله ریاضیات گسسته دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله ریاضیات گسسته


دانلود مقاله ریاضیات گسسته

 

مشخصات این فایل
عنوان: ریاضیات گسسته
فرمت فایل: word( قابل ویرایش)
تعداد صفحات: 47

این مقاله درمورد ریاضیات گسسته می باشد.

خلاصه آنچه در  مقاله ریاضیات گسسته می خوانید : 

- طریقه نمایش گراف
نقاطP  ،Q ،R ،S ،T ،رئوس(Vertices )و خطوطی که رئوس را با هم وصل می کند ضلع (e d g e )نامیده می شودتوجه داریم که محل تلاقی QT وPS یک رأس نیست این دیاگرام را یک گراف(g r a p h ) می نامیم. درجه (d e g r e e )یک رأس A در یک گراف ، برابر تعداد اضلاعی است که رأس A نقطة انتهایی آنها می باشد.لذا درجه Q برابر با4 است. یک گراف را می توان به طرق مختلف نمایش داد مثلاَمی توانستیم ضلع S وP را خارج ا ز مستطیل رسم کنیم چون گرافی را که می سازیم مشخص مجموعه ای از نقاط و راههایی است که آنها را به هم وصل می کند خواص متریک در آنها صادق نیستند لذا از این دیدگاه هردو گرافی که دارای یک ساختار باشند، نمایانگر یک گراف خواهند بود مانند شکلهای(الف و ب).
یالها ممکن است بدون جهت باشندیا جهت داشته باشند که در حالت اخیر آن را گراف جهت دار یا دی گراف می نامیم.

گراف هامیلتونی
ریاضیدان شهیر ایرلندی سر ویلیام هامیلتون (1805-1865) است که وجود جوابی برای بازی » دوددینا« را مورد پژوهش قرار داد.دراین بازی از یازیکن خواسته می شود که راهی در امتداد یالهایی یک دوازده وجهی ( یک چند وجهی منظم با20 رأس،80 یال و12 وجه) چنان بیابد که از هررأس دقیقاَ یک بار بگذرد و سپس به رأس شروع حرکت باز گردد بدین سان این بازی دارای جواب است اگر فقط G یک گراف هامیلتونی باشد.
تعریف: مسیری بین هر دو رأس گراف که از هر رأس دقیقاَیک بار بگذرد.مسیرها میلتونی گویند . مسیری بسته را که از هر دقیقاَ یک بار بگذرد و در آن همه یالها متمایز باشند دور هامیلتونی می نامند. گرافی را گراف هامیلتونی گویند هرگاه دور هامیلتون داشته باشد.
یکی ازمعروفترین مسائل در نظریه گراف،مسئله چهار رنگ است، هر چند که این مسئله در اصل مربوط به نقشه هاست نه گرا فها، اما حل آن با گراف است.
نقشه ای با 48 ایالت همجوار را در نظر بگیرید مسأله این است که کمترین تعداد رنگهایی که لازم است تا نقشه را چنان رنگ آمیزی کنیم که هیچ دو ناحیه هم مرز(که در بیش از یک نقطه هم مرزند و ناحیه یک تکه اند) رنگ مشابهی نداشته باشندد چند تاست؟ گرچه این مسأله بیشتر از لحاظ ریاضی مهم است تا از لحاظ جغرا فیایی، ولی ممکن است برای مثال بر کار نقاشی که می خواهد یک اطلس را رنگ آمیزی کند، و باید بداند که چند رنگ مرکب لازم خواهد داشت اثر بگذارد. قضیه چهار رنگ بیان می دارد که برای رنگ آمیزی هر نقشه ای که بتواند آن را بر روی کاغذ رسم کرد، چهار رنگ کافی است این مسأله برای اولین بار در نیمه اول قرن نوزدهم مطرح شد و تنها حدود بیست سال قبل 977 با استفاده از نظریه گراف قضیه های فراوان و 1200 ساعت از وقت یکی از سریعترین کامپیوترهای زمان توسط دو ریاضیدان به نامهای کنت اپل و ولگانگ هیکن در دانشگاه ایلی نویز حل شد چگونه قضیه چهار رنگ به صورت قضیه ای در نظریه گراف مطرح می گردد؟ اگر به جای هر یک از نواحی نقشه، یک رأس در نظر بگیریم و سپس فقط رأسهای مربوط به نواحی هم مرز زا به یکدیگر وصل کنیم نقشه مورد نظر تبدیل به یک گراف می شودگراف حاصل با  نقشه مورد نظر متناظر است. اپل و هیکن با استفاده از یک کامپیوتر سریع به بررسی تعداد زیادی از حالتهای ممکن که پیش از آن از طریق تحلیل ریاضی نشان داده شده بود که بررسی آنها برای اثبات قضیه کفایت می کند پرداختند و به این ترتیب قضیه را ثابت کردند بنابر این مسأله ای که بیش از نیم قرن در مقابل حمله تعدادی از برگترین ریاضیدانهای زمان مقاومت کرده بود، در برابر یک تحلیل کامپیوتری که بر پایه پیشرفتهای ریاضی نظریه گراف بنا شده بوداز پای در امد.می دانیم که عدد کروماتیک (رنگی )یک گراف عبارت است از مینیمم (Minimom ) تعداد رنگی که بتوان رئوس گراف را رنگ زد، طوری که دو رأس همجوار دارای رنگهای یکسان نباشند. بنابر این عدد 4 عدد رنگی گرافی است که متناظر با نقشهای است که برای نثال 48 ایالت دارد که به وسیله عملیات جبری محاسبه می شود....(ادامه دارد)

نمودار ترسیمی روشها و مدلهای گسسته و پیوسته ریاضی :
در این قسمت می خواهیم جایگاه و نقش شاخه های مختلف ریاضی و ارتباط آنها را با همدیگر به وسیله نمودار ترسیم نماییم . کار ریاضیات کاربردی بررسی و تجزیه و تحلیل مسائل جهان مادی فیزیک و دادن مدل ریاضی متناسب با انها و نهایتاً حل آنها با روشهای ریاضی می باشد . سیستم های فیزکی و پدیده های طبیعی ، اجتماعی و اقتصادی و زیستی ، با توجه به این که عناصر مورد بحث در آنها ذاتاً پیوسته یا گسسته باشند ، به دو صورت سیستم گسسته یا پیوسته در نظر گرفته می‌شوند . مدلی که در ریاضیات برای بررسی و تجزیه و تحلیل آنها در نظر می‌گیریم.  با توجه به توانائی و مناسبت روشهای ریاضی نیز می تواند به حالت گسسته یا پیوسته در نظر گرفته شود . به عنوان مثال با وجود این که سیستم های فیزیکی اغلب از تعدادی ذرات گسسته مثل اتمها و مولکولها تشکیل شده اند ، اما در عمل پیوسته فرض کردن ماده ، فرض بسیار مناسب و دقیقی است و روش مدلسازی آنها در ریاضیات از طریق حساب دیفرانسیل و انتگرال به نوعی به صورت معادلات دیفرانسیل در می آید . در اینجا سیستم به طور ذاتی گسسته است ولی روشی که برای بررسی آن به کار می بریم ، یک مدل پیوسته می باشد و اینها در قلمرو حساب دیفرانسیل و انتگرال هستند .
به عنوان مثال دیگر وقتی قانون رشد سرمایه ، رشد جمعیت ، رشد باکتریها و ... را بحث می کنیم این سیستمها به طور ذاتی گسسته هستند ، ولی هم می توان مدل ریاضی آنها را به صورت پیوسته در نظر گرفت که در این موارد باید با انتخاب جامعه‌ای که تقریباً بزرگ است ، متغیر گسسته را به متغیر پیوسته تبدیل نمود . (در مثال قانون رشد سرمایه فرض می کنیم ، تعداد افزوده شده بهره به سرمایه بزرگ باشد و به صورت روزانه به سرمایه اضافه می شود‌،   در این صورت نسبت   به عنوان یک متغیر پیوسته در نظر گرفته شود) و یا می توان در سستمی که به طور ذاتی گسسته است مدل گسسته نیز برای بررسی و حل آنها انتخاب کرد ، به معادلات (6) و (7) که به ترتیب جواب مدل گسسته و پیوسته می باشند ، در مثال قانون رشد سرمایه مراجعه شود . در چنین حالتی که سیستم به طور ذاتی گسسته را با یک مدل گسسته ریاضی تجزیه و تحلیل و حل می کنیم ، این به قلمرو ریاضیات گسسته مربوط می شود . 
و وقتی که سیستمی را که به طور ذاتی پیوسته است با یک مدل پیوسته بررسی می کنیم ، باز این از قلمرو حساب دیفرانسیل و انتگرال و معادلات دیفرانسیل است ، ولی وقتی که سیستمی را که به طور ذاتی پیوسته است با یک مدل گسسته ریاضی بررسی و حل کنیم ، این به قلمرو آنالیز عددی و محاسبات کامپیوتری مربوط می‌شود. به عنوان مثال وقتی که ریشه معادله   را با روشهای عددی به صورت تقریبی محاسبه می کنیم ، در واقع سیستمی را که به طور ذاتی پیوسته است (ریشه در اعداد حقیقی است) با یک مدل گسسته (تشکیل یک دنباله از تقریبهای متوالی ریشه)‌ بررسی می کنیم . چیزی که در اینجا شایان توجه واهمیت است ، این است که از دیدگاه ضرورت مینیمم سازی خطا و انطباق بیشتر مدل ریاضی داده شده به فیزیکی مسئله بهتر است ، مساله فیزیکی پیوسته را با یک مدل ریاضی پیوسته بررسی و حل نمود و همچنین مساله فیزیکی گسسته را با یک مدل ریاضی گسسته حل نمود ، این جاست که اهمیت و نقش ریاضیات پیوسته و ریاضیات گسسته به طور پایاپای مشخص می شود .

بخشی از فهرست مطالب مقاله ریاضیات گسسته

-    مقدمه                                           1
-    جایگاه و ضرورت آموزش ریاضیات گسسته در نظام جدید دبیرستان            2
-    محتوای کلی ریا ضیات گسسته                                3
-    تفاوت ریاضیات گسسته و حساب دیفرانسیل و ا نتگرال                4
-    مرور تاریخی مباحث مهم ریاضیات گسسته                         8
-     مفهوم جاگشت                                        8
-    اولین فن حدس زدن                                    8
-    دیریکله                                            9
-    تاریخچه اصل شمول و عدم شمول                            9
-    نظریه گراف                                      10
-    مسئله پل کونیگسبرگ                                  10
-    طریقه نمایش گراف                                  11
-    گراف هامیلتونی                                      12
-    رابطه های بازگشتی و مبادلات تفاضلی                          19
-    نمودار ترسیمی روشها و مدلهای گسسته و پیوسته ریاضی                   25
-    منابع                                          28



دانلود با لینک مستقیم


دانلود مقاله ریاضیات گسسته

دانلود پاورپوینت ریاضیات گسسته پیش دانشگاهی ریاضی - درخت - 30 اسلاید قابل ویرایش

اختصاصی از فی توو دانلود پاورپوینت ریاضیات گسسته پیش دانشگاهی ریاضی - درخت - 30 اسلاید قابل ویرایش دانلود با لینک مستقیم و پر سرعت .

دانلود پاورپوینت ریاضیات گسسته پیش دانشگاهی ریاضی - درخت - 30 اسلاید قابل ویرایش


دانلود پاورپوینت ریاضیات گسسته پیش دانشگاهی ریاضی - درخت - 30 اسلاید قابل ویرایش

 

 

 

 

1) در هر درخت مجموع مرتبه و اندازه همواره عددی فرد است.

2) در هر درخت حاصل ضرب مرتبه و اندازه همواره عددی زوج است.

3) هر درخت با حذف هر یال به گرافی ناهمبند تبدیل می شود. و اگر یک یال اضافه کنیم دور پدید می آید.

"مناسب برای دبیران، دانش آموزان و اولیاء"

برای دانلود کل پاورپوینت از لینک زیر استفاده کنید:


دانلود با لینک مستقیم


دانلود پاورپوینت ریاضیات گسسته پیش دانشگاهی ریاضی - درخت - 30 اسلاید قابل ویرایش

مقاله در مورد تاریخچه مختصر ریاضیات

اختصاصی از فی توو مقاله در مورد تاریخچه مختصر ریاضیات دانلود با لینک مستقیم و پر سرعت .

مقاله در مورد تاریخچه مختصر ریاضیات


مقاله در مورد تاریخچه مختصر ریاضیات

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه45

تاریخچه مختصر ریاضیات

انسان اولیه نسبت به اعداد بیگانه بود وشمارش اشیاء  اطراف خود را به حسب غریزه یعنی همان طور که مرغ خانگی تعداد جوجه هایش را میداند انجام میداد اما به زودی مجبور شد وسیله ی شمارش دقیق تری به وجود اورد لذا به کمک انگشتان دست دستگاه شمارش جدیدیپدید اورد که مبنای ان شصت بود .این دستگاه شمار که بسیار پیچیده میباشدقدیمی ترین دستگاه شماری است که اثاری از ان در کهن ترین مدارک موجود یعنی نوشته های سومری مشاهده میشود.سومری ها که تمدنشان مربوط به هزار سال قبل از میلاد مسیح در جنوب بین النهرین یعنی ناحیه بین دو رود دجله وفرات ساکن بودند .ان ها در حدود ۲۵۰۰ سال قبل از میلاد با امپراتوری سامی اکاد متحد شدند وتمدن آشوری را پدید اوردند درز این موقع مصری ها نیز در سواحل سفلای رود نیل تمدن درخشانی پدید اوردنده بودند.طغیان رود نیل هر ساله حدود زمینهای زراعتی این قوم را محو میکرد احتیاج به تقسیم مجدد این اراضی رهبری انها به اولین احکام ساده هندسی گردیدهمچنین مبادلات تجاری وتعیین مقدار باج وخراج سالیانه ان ها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها والواحی است که در نتیجه حفاریهای به دست امده وبه خط هیرو گلیفی می باشند به دست آمده.قدیمی ترین انها که مربوط به ۱۸۰۰ سال قبل از میلاد است شامل چند رساله درباره ی علم حساب ومسایل حساب مقدماتی میباشد از آن جمله رساله پاپیروس آهمس  است که در سال ۱۸۶۸ توسط ایسنلر مصر شناس مشهور ترجمه شد .سلیر تمدنهای شرقی نظیر چینی وهندی نقش موثری نداشتند جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماورا الطبیه خرد شده است.

قریب هزار سال پس از نابودی فرهنگ قدیم مصر ومحو تمدن عاشور یونانیان از روی مقدمات پراکنده وبی شکل آنها علمی پدید اوردند که در واقع به عالی ترین وجه مرتب ومنظم گردیده وعقل ومنطق را کاملا اقناع نمودند نخستین دانشمند یونانی طالس ملطسی(۶۳۹-۵۴۸) قبل از میلاد است که در پیدایش علوم نقش مهمی به عهده داشت ومیتوان وی را موجد علوم فیزیک نجوم وهندسه دانست.لیکن انتساب تئوری بسیار مهم هندسی تشابه به او کاملا بی اساس است.در اوایل قرن ششم قبل از میلاد فیثاغورس   از اهالی ساموس یونان کم کم ریاضیات را بر پایه واساس محکم قرار داد وبه ایجاد مکتب فلسفی خویش همت گماشت .فیثاغورسیان عدد را به خاطر هم آهنگی ونظمی که دارد اساس ومبدا همه چیز میپنداشتند وبراین عقیده بودند که تمام مفاهیم را به کمک آن میتوان بیان نمود.

پس از فیثاغورس باید از زنون فیلسوف وریاضیدان یونانی که ۴۹۰ قبل از میلاد در ایلیا متولد شده است نام برده شود در اوایل نیمه دوم قرن پنجم بقراط از اهالی کیوس قضایای متفرق آن زمان را گرد اوری کرد ودر حقیقت همین قضایا است که مبانی هندسه ی جدید ما را تشکیل می دهد.

در قرن چهارم قبل از میلاد افلاطون در باغ اکادموس(آکادمی از همین نام گرفته شده )در آتن مکتبی ایجاد کرد که ۹ قرن بعد از او نیز هم چنان بر پا ماند .وی ریاضیات مخصوصا هندسه را بسیار عزیز می داشت  تا جایی که بر سر در مکتب خود این جمله را حک کرده بود(هر کسی هندسه نمی  داند وارد نشود)  این فیلسوف بزرگ به تکمیل منطق که رکن اساسی ریاضیات است همت گماشت.

انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجه‌هایش را می‌داند انجام می‌داد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده می‌باشد قدیمی‌ترین دستگاه شماری است که آثاری از آن در کهن‌ترین مدارک موجود یعنی نوشته‌های سومری مشاهده می‌شود.

سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بین‌النهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.

در این موقع مصریها نیز در سواحل سفلای رود نیل تمدنی درخشان پدید آورده بودند. طغیان رود نیل هر سال حدود و ثغور زمینهای زراعتی این قوم را محو می‌کرد. احتیاج به تقسیم مجدد این اراضی موجب رهبری آنها به اولین احکام سادة هندسی گردید. همچنین مبادلات تجارتی و تعیین مقدار باج و خراج سالیانه آنها را وادار به توسعه علم حساب نمود این اطلاعات همگی از روی پاپیروسها و الواحی است که در نتیجه حفاریها بدست آمده و به خط هیروگلیفی می‌باشد. قدیمی‌ترین آنها که مربوط به 1800 سال قبل از میلاد است شامل چند رساله دربارة علم حساب و مسائل حساب مقدماتی می‌باشد، از آن جمله رسالة پاپیروس آهس است که درسال 1868 توسط ایسنلر مصرشناس مشهور ترجمه شد. سایر تمدنهای شرقی نظیر چینی و هندی در ترویج دانش نقش مؤثری نداشته‌اند و جز برخی نتایج پراکنده که در زیر فشار مفاهیم ماوراءالطبیعه خرد شده است چیزی از آنان در دست نیست


دانلود با لینک مستقیم


مقاله در مورد تاریخچه مختصر ریاضیات

اقدام پژوهی تدریس ریاضیات دوره متوسطه

اختصاصی از فی توو اقدام پژوهی تدریس ریاضیات دوره متوسطه دانلود با لینک مستقیم و پر سرعت .

اقدام پژوهی تدریس ریاضیات دوره متوسطه


اقدام پژوهی تدریس ریاضیات دوره متوسطه

دانلود اقدام پژوهی بررسی چالش های  تدریس درس ریاضیات دوره متوسطه

اقدام پژوهی حاضر شامل کلیه موارد مورد نیاز و فاکتورهای لازم در چارت مورد قبول آموزش و پرورش میباشد. این اقدام پژوهی کامل و شامل کلیه بخش های مورد نیاز در بخشنامه شیوه نامه معلم پژوهنده میباشد.

فرمت فایل: ورد قابل ویرایش

تعداد صفحات: 14

 

 

 

 

 

فهرست مطالب

چکیده

مقدمه

هدف تحقیق 

گردآوری اطلاعات (شواهد1)

تجزیه و تحلیل اطلاعات  

خلاصه یافته های اولیه

اصول و مبانی تدریس درس ریاضی 

معیارهای ارزشیابی 

چگونگی اجرای راه جدید 

گرد آوری اطلاعات ( شواهد 2 )

راه کار ها و پیشنهادات  

نتیجه گیری 

منابع:

 

چکیده

  امروزه بحث جهانی شدن GLOBALZATION امروزه منجر به بروز چالش هایی در جوامع در حال توسعه شده است. این بحث شرایط ویژه ای را در نظام های تعلیم و تربیت جهانی پدید آورده است. بدین صورت اگر نظام های آموزشی، موقعیت کنونی را به درستی درک و تحلیل نمایند، می توانند در برابر آن دست به انتخاب درست بزنند و تهدیدهای مبهم را به فرصت های ممتاز تبدیل نمایند و در غیر این صورت با مشکلات فرهنگی، اجتماعی اقتصادی متعددی روبرو خواهند شد که جوامع ساده و اولیه را زمین گیر خواهد نمود. در این مقاله موارد زیر مورد بررسی  قرار گرفته است.

1- بررسی تأثیرات فرهنگی، اجتماعی، اقتصادی و فلسفی روند جهانی شدن.

2- چهارمین گزارش یونسکو در زمینه ی ((معلمان و تدریس در جهان در حال تغییر)) در باب ((ناتوانی نظام های آموزش و پرورش)) در جهت افزایش منزلت معلمان.

3- نقش نظام های آموزشی و ویژگی های رهبران فرهنگی در عصر جهانی شدن.

4- ابعاد تربیت انسان در عصر جهانی شدن.

5- تحول در کلاس درس


دانلود با لینک مستقیم


اقدام پژوهی تدریس ریاضیات دوره متوسطه