فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله دستاورد های عملی مهندسی ژنتیک در بیوتکنولوژی

اختصاصی از فی توو دانلود مقاله دستاورد های عملی مهندسی ژنتیک در بیوتکنولوژی دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله دستاورد های عملی مهندسی ژنتیک در بیوتکنولوژی


دانلود مقاله دستاورد های عملی مهندسی ژنتیک در بیوتکنولوژی

برخی پروتئین های پستانداران دارای اهمیت تجارتی و پزشکی هستند . تولید تجارتی پروتئین های انسانی به وسیله ی استخراج مستقیم از مایعات یا بافت های بدن ، کاری پیچیده و گران و یا غیر ممکن می باشد ، اما با کلون کردن ژن می توان آن ها را از باکتری ها تولید کرد .

* انسولین انسانی

یکی از جالب ترین مثال های اهمیت مهندسی ژنتیک ، تولید انسولین انسانی می باشد . انسولین انسانی که از طریق مهندسی ژنتیک تهیه شده است ، اولین داروی بیوتکنولوژیک است که وارد بازار شده است . انسولین پروتئینی است که در پانکراس تولید می شود و برای تنظیم متابولیسم کربوهیدرات بدن حیاتی می باشد  . دیابت که بیماری وجود آمده در اثر کمبود انسولین است ، ‌میلیون ها انسان را رنج می دهد . درمان قطعی دیابت ، تزریق پیاپی یا تجویز خوراکی انسولین است و از آنجایی که انسولین بیش تر پستانداران از نظر ساختمان مشابه می باشد ، درمان دیابت انسانی با استفاده از انسولین استخراج شده از پانکراس گاو و خوک امکان پذیر است ، اما انسولین غیر انسانی به اندازه ی انسولین انسانی موثر نیست و فرآیند استخراج آن گران و پیچیده می باشد . امروزه ژن تولید  انسولین انسانی در باکتری ها کلون می شود .

شامل 13 صفحه فایل word قابل ویرایش


دانلود با لینک مستقیم


دانلود مقاله دستاورد های عملی مهندسی ژنتیک در بیوتکنولوژی

ژنتیک

اختصاصی از فی توو ژنتیک دانلود با لینک مستقیم و پر سرعت .

تعریف ژنتیک و کاربرد علم ژنتیک 22 صفحه


دانلود با لینک مستقیم


ژنتیک

دانلود تحقیق کاربردهای الگوریتم ژنتیک

اختصاصی از فی توو دانلود تحقیق کاربردهای الگوریتم ژنتیک دانلود با لینک مستقیم و پر سرعت .

دانلود تحقیق کاربردهای الگوریتم ژنتیک


دانلود تحقیق کاربردهای الگوریتم ژنتیک

چکیده :
الگوریتم های ژنتیک یکی از الگوریتم های جستجوی تصادفی است که ایده آن برگرفته از طبیعت می باشد . نسل های موجودات قوی تر بیشتر زندگی می کنند و نسل های بعدی نیز قوی تر می شوند به عبارت دیگر طبیعت افراد قوی تر را برای زندگی بر می گزیند. در طبیعت از ترکیب کروموزوم های بهتر ، نسل های بهتری پدید می آیند . در این بین گاهی اوقات جهش هایی نیز در کروموزوم ها روی می دهد که ممکن است باعث بهتر شدن نسل بعدی شوند. الگوریتم ژنتیک نیز با استفاده از این ایده اقدام به حل مسائل می کند . الگوریتم های ژنتیک در حل مسائل بهینه سازی کاربرد فراوانی دارند.
مسئله ی کاهش آلاینده های Cox ، NOx و Sox در کوره های صنعتی ، یکی از مسائل بهینه سازی می باشد، که هدف آن بهینه کردن عملکرد کوره های احتراقی بر حسب پارامترهای درصد هوای اضافی (E) و دمای هوای خروجی از پیش گرمکن (T) ، به منظور کاهش میزان آلاینده های تولید شده در اثر انجام عملیات احتراق است.
در این تحقیق ابتدا مروری بر مفاهیم مقدماتی الگوریتم های ژنتیک کرده سپس مشخصات کلی مسئله عنوان می شود، در انتها مسئله ی مورد نظر توسط الگوریتم ژنتیک اجرا و نتایج آن با روش تابع پنالتی مقایسه می شود.

 

فهرست مطالب

11 ﻣﻘﺪﻣﻪ ای ﺑﺮ ﭘﺎﻳﮕﺎه داده اوراﻛﻞ g‪10‬
‫1-1-1 اﺛﺮ ﺟﻮ اﻗﺘﺼﺎدی ﺑﺮ ﻫﺰﻳﻨﻪ ﺗﻜﻨﻮﻟﻮژی
2-1-1 ﻳﻜﭙﺎرﭼﮕﻲ
3-1-1 ﻳﻜﭙﺎرﭼﻪ ﺳﺎزی ﺳﺨﺖ اﻓﺰار
  ‫4-1-1 ﻳﻜﭙﺎرﭼﻪ ﺳﺎزی داده ﻫﺎ از دﻳﺪ ﻳﻚ ﺷﺮﻛﺖ ﻣﻌﻤﻮﻟﻲ
‫5-1-1 ﻳﻜﭙﺎرﭼﻪ ﺳﺎزی ﺑﺮﻧﺎﻣﻪ ﻫﺎی ﻛﺎرﺑﺮدی
  ‫6-1-1 ‪  Grid‬در ﭘﺎﻳﮕﺎه داده اوراﻛﻞ 10g
‫2-1 اﻧﺒﺎر داده ﭼﻴﺴﺖ؟‬
1-2-1 ﭼﺮا ﺑﻪ ﻳﻚ اﻧﺒﺎر داده ﻧﻴﺎز دارﻳﺪ؟‬
‫3-1 ﭼﺸﻢ اﻧﺪاز ﺗﺎرﻳﺨﻲ
  ‫1-3-1- ﻇﻬﻮر اﻧﺒﺎر داده
  ‫. 4-1 از ﻣﺪﻟﺴﺎزی ارﺗﺒﺎط –موجودیت (E-R)استفاده نکنید
1-4-1 ﻣﺪل ﺳﺎزی اﺑﻌﺎد‬
3-4-1 ﺟﺪول ﺣﻘﻴﻘﻲ‬
4-4-1ﺟﺪول اﺑﻌﺎدی (ﭼﻨﺪ ﺑﻌﺪی)
5-4-1 ﻛﻠﻴﺪ ﻫﺎی ﻣﺨﺰن
5-1 ﭘﻴﻜﺮ ﺑﻨﺪی ﻫﺎی ﺳﺨﺖ اﻓﺰار ﺑﺮای ﻳﻚ اﻧﺒﺎر‬
1-5-1معماری سرویس دهنده:
2-5-1معماری پایگاه داده اراکل
فصل دوم : ابزار های انبار اراکل
1-2: کدام ابزار
2-2: سازنده انبار اوراکل یا OWB
1-2-2: تنظیم سازنده انبار
2-2-2: مشتری سازنده انبار اراکل
3-2-2: اهداف و منابع داده ها:
4-2-2: تعریف جداول موجود در انبار داده هایمان
5-2-2: ایجاد ابعاد
6-2-2: ایجاد یک مکعب
7-2-2: تعریف منبع برای هدف نقشه کشی ها:
8-2-2: تایید طرح
9-2-2: ایجاد طرح
عنوان          صفحه

10-2-2: استقرار طرح
3-2: کاشف اراکل
1-3-2: چرا Discoverer؟
2-3-2: تنظیم محیط
3-3-2: پرس و جو با استفاده از Plus Discoverer:
4-2: گزارشات اراکل 10g
1-4-2: ایجاد یک گزارش با استفاده از سازنده گزارش
2-4-2: مثال های بیشتر از گزارش های اراکل
3-4-2:انتشار گزارش
5-2: خلاصه
فصل سوم : انبار داده و وب
1-3: بررسی بیشتر
1-1-3: اینترنت و اینترانت
2-1-3: نرم افزار اراکل برای انبار داده
2-3: سرور کاربردی اراکل10g
1-2-3: چرا یک پرتال تنظیم می کنند؟
2-2-3: پرتال AS Oracle
1-3-3: Discoverer
2-3-3:انتشار یک پورت لت
3-3-3: ایجاد گزارش استاتیک
4-3: خصوصی سازی اراکل
5-3: انبار داده ها و هوشمندی تجارت الکترونیکی
فصل چهارم: OLAP
1-4: چرا نیاز به انتخاب اراکل OLAP داریم؟
1-1-4: کاربردهای OLAP
2-1-4: ROLAP و MOLAP
3-1-4: اراکل OLAP
2-4: معماری اراکل OLAP
3-4: فضاهای کاری آنالیزی
1-3-4: مدل چند بعدی
2-3-4: ایجاد فضای کاری آنالیزی
1-4-4: تعریف متاداده OLAP برای شمای رابطه ای
عنوان         صفحه

2-4-4:دیدگاه های متاداده OLAP و ارزیابی آن
5-4: مدیر فضای کاری آنالیزی
1-5-4: ایجاد ویزارد فضای کاری آنالیزی
2-5-4: تجدید فضای کاری آنالیزی
3-5-4: ایجاد یک طرح تجمعی
4-5-4: فعال سازهای فضای کاری آنالیزی
6-4: پرس وجوی فضاهای کاری آنالیزی
1-6-4: DML OLAP
2-6-4: بسته DBMS-AW
3-6-4: دسترسی SQL به فضای کاری آنالیزی
4-6-4: OLAP API و اجزاء BI
7-4: خلاصه
فصل پنجم : داده کاوی اراکل
5.1: داده کاوی در پایگاه داده اوراکل g10
5.2. :روش های داده کاوی اوراکل
5.2.1 : قوانین پیوستگی
5.2.2 : گروهبندی
5.2.3 : استخراج ویژگی
5.2.4 : طبقه بندی
5.2.5 : بازگشت
5.2.6 : استاندارد PMML
5.3.1 : فرمت داده
2-3-5 آماده سازی داده
4-5: استفاده از واسط های داده کاوی اوراکل
1-4-5: نصب و پیکربندی
2-4-5: روند آنالیز داده کاوی
3-4-5: مثالی با استفاده از جاوا API
4-4-5: مثال استفاده از روال های PL/SQL
5-5: خلاصه
فصل ششم: قابلیت دسترسی بالا و انبار داده
1-6: مقدمه
2-6: یک سیستم با قابلیت دسترسی بالا چیست؟
1-2-6: ویژگی های یک سیستم با قابلیت دسترسی بالا
عنوان  صفحه
2-2-6: نقش بهترین تجربیات عملکردی
3-6: مرور اجمالی پایگاه داده اوراکل 10g با ویژگی  قابلیت دسترسی بالا
4-6: حفاظت در برابر نقص های سخت افزاری/ نرم افزاری
1-4-6: گروههای با عملکرد حقیقی (RAC)
2-4-6: ذخیره سازی مطمئن
3-4-6: آشکار سازی و نمایش خط:
4-4-6: مدیریت منابع
5-6: حفاظت در برابر فقدان داده
1-5-6: بازیابی از نقص(خطا) متوسط
2-5-6: بازیابی از خطاهای انسانی با استفاده از flash back:
3-5-6: بازیابی خطا بوسیله گارد یا نگهبان داده
4-5-6: معماری حداکثر قابلیت دسترسی اوراکل
5-5-6: حفاظت متا داده
6-6: مدیریت زمان برنامه ریزی شده
1-6-6: پیکربندی مجدد نمونه پویا
2-6-6: حفظ آنلاین
3-6-6: تعریف مجدد آنلاین:
4-6-6: ارتقاء درجه
7-6: مدیریت طول عمر اطلاعات
8-6: خلاصه:

 

شامل 100 صفحه word

 


دانلود با لینک مستقیم


دانلود تحقیق کاربردهای الگوریتم ژنتیک

دانلود پروژه بیماری های ژنتیک و تغذیه

اختصاصی از فی توو دانلود پروژه بیماری های ژنتیک و تغذیه دانلود با لینک مستقیم و پر سرعت .

دانلود پروژه بیماری های ژنتیک و تغذیه


دانلود پروژه بیماری های ژنتیک و تغذیه

تاریخچه.............................. 1

مقدمه................................ 3

متخصص ژنتیک.......................... 3

تشخیص پیش از موقع و پیشگیری.......... 5

درمان................................ 6

چند نمونه از درمان های ثمربخش........ 6

پروژه ژنوم انسانی.................... 11

اساس ژنتیک........................... 17

ژنتیک و ژنومیک....................... 18

اصول ژنتیک........................... 19

اسلوب وراثت و نفوذپذیری.............. 23

بیماری های کروموزومال................ 27

بیماری در سطح میتوکندریایی........... 38

ژنتیک و تغذیه درمانی................. 39

تأثیر ارتباط متقابل ژن و مواد مغذی بر روی فرآیندهای متابولیکی.............................. 40

تاثیرات و ارتباط متقابل بین ژن و مواد مغذی بر روی ظهور ژن..................................... 43

عنوان                                          صفحه

پیچیدگی موجود در ارتباط ژنتیک و تغذیه 48

ژنتیک به عنوان یک تخصص پزشکی......... 50

نظام ژنتیک انسانی و پزشکی............ 50

طبقه بندی اختلالات ژنتیکی.............. 51

نقایص تک ژنی......................... 51

اختلالات کروموزومی..................... 51

توارث چند عاملی...................... 52

فصل 1: اساس کروموزومی وراثت............ 53

اساس کروموزومی وراثت................. 54

کروموزوم های انسانی.................. 55

چرخه حیاتی یک سلول سوماتیک........... 56

میتوزیس.............................. 57

میوزیس............................... 59

گامت سازی و باروری انسان............. 61

تخمک سازی............................ 62

باروری............................... 62

رابطه طبی میوزومیتوز................. 62

عنوان                                          صفحه

فصل 2: ژنوم انسان...................... 63

ساختمان DNA.......................... 64

ساختمان و تشکیلات ژن.................. 65

اشکال ساختمانی یک ژن انسانی معمولی... 65

خانواده های ژن....................... 65

پایه های تظاهر ژنی................... 66

رونویسی.............................. 66

ترجمه و رمز ژنتیکی................... 67

روند پس از ترجمه..................... 67

ساختمان کروموزوم های انسان........... 67

کروموزوم میتوکندریایی................ 68

فصل 3: الگوهای توارثی تک ژنی........... 69

ترمینولوژی یا لغت شناسی.............. 70

اختلالات ژنتیکی با توارث کلاسیک مندلی... 72

سن شروع و سایر فاکتورهای موثر بر الگوهای شجره ای  72

سایر فاکتورهای موثر بر الگوهای شجره ای 73

هتروژنیتی ژنتیکی..................... 73

عنوان                                          صفحه

هتروژنیتی لوکوسی..................... 74

هتروژنیتی آللی....................... 74

توارث اتوزومال مغلوب................. 75

فرکانس بروز ژن و فرکانس حامل......... 75

هم خونی و ازدواج..................... 76

هم خونی.............................. 76

اختلالات مغلوب نادر موارد جدا شده ژنتیکی 77

اختلالات تحت تأثیر جنسیت............... 79

آنالیز جداسازی....................... 79

الگوهای توارثی اتوزومال غالب......... 79

مشخصات توارث اتوزومی غالب............ 80

هموزیگوت های صفات اتوزومال غالب...... 81

فنوتیپ های محدود به جنس در بیماری اتوزومی  82

توارث وابسته به X.................... 83

توارث وابسته به X مغلوب.............. 83

مشخصات توارث وابسته به X مغلوب....... 84

موزائیسم............................. 84

عنوان                                          صفحه

موزائیسم سوماتیک (غیرجنسی)........... 85

توارث مادری موتاسیون های میتوکندریایی 85

فصل 4: اساس ژنتیک سلولی بالینی......... 87

معرفی سیتوژنتیک...................... 88

شناسایی کروموزوم..................... 88

اختلالات کروموزومی..................... 89

اختلال در تعداد کروموزوم‌ها............ 89

تری پلوئید و تتراپلوئید.............. 90

آناپلوئید............................ 90

فصل 5: بیماری های ژنتیکی............... 90

بیماری آلزایمر....................... 92

ژنتیک و سرطان........................ 93

زیست شناسی سرطان..................... 99

اساس ژنتیکی سرطان.................... 100

سرطان در خانواده..................... 100

سرطان و محیط......................... 101

تراتوژن ها........................... 101

عنوان                                          صفحه

سرطان ارثی پستان و تخمدان............ 104

کانسر فیزیولوژی ارثی کلون............ 110

بیماری سیستیک فیبروزیس............... 113

بیماری هیپرکلسترولمی خانوادگی........ 118

دیابت شیرین وابسته به انسولین........ 124

دیابت شیرین غیروابسته به انسولین..... 130

سندرم مارفان......................... 134

سندرم ترنر........................... 143

ساختمان و عملکرد هموگلوبین........... 148

هموگلوبین های انسان و ژنهای آنها..... 148

ناهنجاری های هموگلوبین در انسان...... 149

هموگلوبین لپور....................... 150

انواع دیگر هموگلوبین................. 150

کم خونی کولی......................... 151

کم خونی سلول داسی شکل................ 154


عنوان                                          صفحه

دیگر ناهنجاری های ژنتیکی و نقص های زمان تولد   160

هموسیستئین یوریا..................... 160

سندرم داون........................... 160

افتادگی دریچه میترال................. 161

بیماری ویلسون........................ 161

صلبیه آبی............................ 161

سولفوسیتسین یوریا.................... 162

شکاف سقف دهان........................ 162

اسپینا بیفیدا........................ 162

فلج مغزی............................. 162

اطلاعات کلی در مورد ژنها، تغذیه و بیماری ها 164

طرح ژنوم محیطی....................... 164

نقش تغذیه از دیدگاه ژنتیک............ 165

کمبود ویتامین ممکن است عامل ایجاد جهش ژن شود   168

ژنتیک و برنامه های رژیمی............. 170

چگونه بیماری های ژنتیکی بر روی نیازهای تغذیه ای تأثیر می گذارند................................. 172

تفاوت بین بی‌نظمی‌های محض ژنتیکی و بی‌نظمی‌های چند علتی....................................... 172

عنوان                                          صفحه

گالاکتوزمیا........................... 175

هیپرفنیل آلانینمی..................... 178

تغییر ژنتیک و تغذیه در رابطه با بیماری های قلبی و عروقی....................................... 184

چگونگی تأثیر رژیم غذایی بر روی فرآیندهای فیزیولوژیکی بدن....................................... 185

وزن بدن و ژنتیک......................186

 

آشنایی با اصول دانش ژنتیک ( زادشناسی )، مورد نیاز و علاقة همه افراد است، زیرا همة کسانی که فرزندانی یا مشکل وراثتی بالقوه ای در خانواده دارند و یا آنانی که با تلاش پیگیر و هیجان انگیز ترسیم نقشة تمام 000/60 تا 000/70 ژن انسان ( طرح تحقیقاتی ترسیم نقشة کامل ژنی انسان) دلبستگی دارند و بالاخره همة مردم، به این آشنایی نیاز و علاقه دارند.

 

بچه ها به پدر و مادرشان شباهت دارند و خویشاوندان این شباهت را می یابند و با جـملاتـی مانند : بینـی او مثل بینی پـدربزرگش نوک بالاست » در این باره اظـهار نظـر می کنند.

 

بیش از 4000 صفت ارثی وجود دارد که جایگاه کرموزومی بیش از 1000 مورد آنها شناخته شده است. حدود چهار درصد نوزادان دچار یک نقص مادرزادی جدی هستند، واژة مادرزادی، علت ابتلا به نقص را بیان نمی کند و تنها به معنی وجود نقص در هنگام تولد است. حداقل یک چهارم این نـقایص بر اثر مجموع تأثیرات ژن های متعدد به اضافه یک یا چند عامل محیطی ( چند عاملی) به وجود می آید، ولی تقریباً علت نیمی از نقایص مادرزادی ناشناخته باقی مانده است. تقریباً از هر 166 نوزاد، یک نوزاد مبتلا به یک ناهنجاری کروموزومی مانند نشانگان داون است و حدود 2 تا 3 درصد مبتلایان، دچار اختلالاتی هستند که عامل یک تک ژن غیرطبیعی است احتمالاً 20 درصد از بیماران بستری در بیمارستان های کودکان، مشکلی دارند که تا حدی ژنتیکی است بعد ازتصادفات رانندگی و سرطان، ناهنجاریهای مادرزادی سومین عامل شایع مرگ و میر در سنین 1 تا 14 سالگی هستند و بیش از 20 درصد مرگ و میرهای نوزادان، بر اثر نقایص مادرزادی است. بنابراین، اختلالات ژنتیکی، درد و رنج عظیمی را به بشر تحمیل کرده است.

 

مردم غالباً می گویند که " سرطان درخانواده ما شایع است " یا " افراد خانواده ما همگی بر اثر حملات قلبی می میرند" از آنجا که بیماری قلبی و سرطان، دو علت مرگ و میر در ایالات متحدة آمریکاست، پرسش واقعی این است که آیا خطر بروز این دو بیماری در خانواده های معینی، بیش از خطر بروز در همة خانواده هاست یا این  گونه نیست ؟

شامل 234 صفحه فایل word قابل ویرایش

 


دانلود با لینک مستقیم


دانلود پروژه بیماری های ژنتیک و تغذیه

دانلود مقاله یک الگوریتم ژنتیک جدید همراه با بازچینی مجدد

اختصاصی از فی توو دانلود مقاله یک الگوریتم ژنتیک جدید همراه با بازچینی مجدد دانلود با لینک مستقیم و پر سرعت .

 

 

 

یک الگوریتم ژنتیک جدید همراه با بازچینی مجدد ژن ها برای خوشه بندی داده ها

 


چکیده
در این گزارش ما یک روش جدید برای خوشه بندی داده ها بر پایه الگوریتم ژنتیک همراه با بازچینی مجدد ژن های هر کروموزوم در هر مرحله تکرار ارائه می دهیم.این امر باعث حذف انحطاط در مراکز خوشه ها در هر مرحله می شود در این گزارش یک عملگر ترکیب (crossover) جدید تعریف شده است که از میزان شباهت بین کروموزوم ها استفاده می کند.احتمال ترکیب و جهش در هر مرحله به صورت وفقی محاسبه می شود تا الگوریتم کمتر در بهینه های محلی گیر کند این الگوریتم به همراه الگوریتم K-mean و دیگر الگوریتم های تکاملی بر روی داده های UCI اعمال شده است و نتایج با همدیگر مقایسه شده است نتایج نشان می دهد الگوریتم ارایه شده کارایی و انعطاف بالاتری دارد.

 

واژه های کلیدی: خوشه بندی ، الگوریتم ژنتیک ، K-mean

 



1- مقدمه
خوشه بندی یکی از مهمترین تکنیک های یادگیری بدون سرپرستی می باشد که در آن داده ها به صورت بردار هایی در فضای چند بعدی در گروه هایی ( خوشه ) بر اساس شباهت ویژگی هایشان دسته بندی می شوند این گروه بندی بر اساس دو شرط انجام می شود 1-همگنی در گروه ِداده ها در هرگروه شبیه به هم باشند 2-غیر همگنی در گروهها ِیعنی داده ها در گروههای متفاوت شبیه به هم نباشند ما داده ها را به عنوان نقاطی در فضای چند بعدی در نظر می گیریم که بعد همان تعداد ویژگی ها می باشد بنابراین object ها اشاره دارند به نقاط و پایگاه داده به این صورت نمایش داده می شود X={x1,x2,x3,..,xk} در جایی که xk متعلق به Rd می باشد که k تعداد داده ها و d نشان دهنده بعد می باشد.[1,2]
در مجموع می توان گفت که کلاسترینگ دو روش اصلی دارد روشهای مرتبه ای و روشهای جداسازی(مجزا) به طوری که روش مرتبه ای یک درخت مرتبه ای از کلاسترهای تودرتوبه عنوان یک درخت یکنواخت.
الگوریتمهای کلاسترینگ مجزا تولید می کنند Cدسته (کلاستر)از مجموعه داده هادر جایی که C تعداد کلاستر ها می باشد اغلب غیر معمول است که ما درجه تمایل کلاسترها را با بهینه سازی تابع هدف پیدا کنیم. از جمله این روش ها k-means جزء این دسته می باشد. به طوری که در این روش دسته بندی داده ها بستگی به میزان شباهت یا عدم شباهت که عموما دلالت دارد به فاصله بین داده یعنی هرچه داده به هم نزدیک تر باشند در یک کلاستر قرار می گیرند این فاصله ها به صورت متری در نظر گرفته می شوند با افزایش بعد این فاصله ها بنابراین این فاصله ها را در هر ویژگی به صورت مجزا اندازه گیری می کنیم اصل در این روش این است که فاصله ها را تا مرکز کلاستر اندازه می گیریم از انواع فاصله ها می توان فاصله اقلیدسی را نام برد .یک فرمول عمومی در مسائل کلاسترینگ بدین ترتیب می باشد که مجموعه ای از n نقطه در فضای d بعدی ویک عدد صحیح k و اتخاذ یک مجموع از مراکز کلاسترها در فضای Rd به طوری که هدف این است تا مجموع فواصل اقلیدسی نفاط از نزدیکترین مرکز مینیمم شود(SSE) که دارای روابطی به شکل[1] :

 

 

 

به علت قابلیت و پیاده سازی آسان k-means برای کلاسترینگ مجموعه داده های بزرگ استفاده می شود، k-means به صورت تکراری جهت محاسبه مراکز کلاسترها به کار می رود هر مجموعهZ z  یک مجموعه از همسایگی ها دارد که به عنوان مجموعه ای از ناقاط که به z نسبت به دیگر نقاط نزدیک تر هستند الگوریتم با مجموعای از مراکز شروع شده وسپس همسایگی آنها محاسبه می شود ، در مراحل پی در پی مراکز توسط همسایهای خود جایگزیین شده ودوباره همسایگی ها تعیین میشود و این تا جایی ادامه می یابد که که یک معیار همگرایی از قبیل زمانی که دردو مر حله پی در پی مراکز تغییر نکند برآورده شود[2,3]
با اینکه الگوریتمk-means یکی از الگوریتم های معروف وپر کاربرد در خوشه بندی محسوب می شود ولی چند عیب اساسی نیز دارد. الگوریتمk-means به شدت به انتخاب مراکز حساس می باشد و یک انتخاب ضعیف در ابتدا ممکن است منجر به بهینه محلی شود که بشدت از بهینه عمومی پایین تر است از طرفی با بزرگ شدن حجم داده ها الگوریتم نیاز به زمان زیادی جهت پیدا کردن بهینه محلی دارد
الگوریتم ژنتیک بر پایه اصل بقاء در طبیعت بوجود آمده است الگوریتم های تکاملی کاربرد گسترده ای در بهینه سازی مسائل دارند در سال های اخیر تلاش های زیادی جهت بهبود خوشه بندی بر پایه الگوریتم ژنتیک انجام شده است [4,5,6,7]میشل لازلو یک روش الگوریتم ژنتیک برای انتخاب همسایگی مراکز بنابر جستجوی عمومی k-means برای کلاسترینگ داده ها ارائه داد[4]. بدین منظور او از یک crossover جدید برای تعویض همسایگی مراکز استفاده کرد.در یک روش دیگر از کد گذاری کروموزوم ها به صورت یک رشته به طول حجم داده ها استفاده شده در این روش هر ژن یک کروموزوم مربوط به یک داده بود به صورتی که شماره آن ژن نشان دهنده داده و محتوی آن نشان دهنده شماره خوشه مربوط به داده است در این روش حجم فضای جستجو کاهش نیافته و در مجموعه داده هایی که حجم بالایی دارند، پیدا کردن جواب بهینه هزینه بالایی دارد.
اکثر الگوریتم هایی که بر پایه ژنتیک هستند مشکل انحطاط دارند این مشکل زمانی رخ می دهند که چندین کروموزوم راه حل های یکسانی را ارائه کنند [5]انحطاط باعث می شود تا الگوریتم نتواند فضای جستجو را به طور بهینه وکارا جستجو کند و این بدلیل این است که یک خوشه به طور تکراری در چندین کروموزوم وجود دارد در روشی که در این گزارش بررسی شده است (GAGR) انحطاط در کروموزوم ها بشدت کم شده است و این امر باعث افزایش سرعت در جستجوی فضای جستجو شده است علاوه بر این چون کروموزوم ها دارای مقادیر حقیقی هستند ترکیب در آنها به صورت اکتشافی و مسیری انجام شده است
در بخش بعدی تعاریف روابط لازم که در الگوریتم استفاده شده شرح داده شده است در بخش سوم جزییات الگوریتم تشریح شده در بخش چهارم این گزارش در مورد ویژگی ها و توانایی های این الگوریتم بحث شده است آزمایشات تجربی را در بخش پنجم آمده است و در نهایت نتیجه گیری و بحث در بخش ششم این گزارش آمده است.

 

2- تعاریف مقدماتی
در این بخش ابتدا چند تعریف که در قسمت های بعدی بکار می رود ارائه می کنیم این تعاریف در عملگرهای الگوریتم ژنتیک و در بازچینی ژن ها کاربرد دارد [5]
تعریف 1 :اگر x1 و x2 دو بردار در فضای RN باشند آنگاه داریم :


تعریف 2 :اگر x1 و x2 دو بردار در فضای RN باشند آنگاه فاصله بین x1 و x2 به صورت زیر تعریف می شود

 

تعریف 3 :از ترکیب دو بردارx1 و x2 یک بردار جدید x1x2 به صورت زیر تعریف می شود

واضح است که :

تعریف 4 :اگر x1 و x2 دو بردار در فضای RN باشند و x1 نا مساوی با x2 باشد و j کوچکترین عددی باشد که x1(j)<x2(j) آنگاه تابع زیر را داریم:

و اگر x1(i)>x2(i) برای بعضی مقادیر i برقرار باشد و k بزرگترین عددی باشد که x1(k)>x2(k) آنگاه تابع زیر را داریم:

برای روشن تر شدن تعاریف بالا از یک مثال برای این تعاریف استفاده شده است این مثال در جدول شماره 1 آمده است

جدول 1 مثالی از تعاریف بالا
تعریف 5 :اگر x1 و x2 دو بردار در فضای RKN به صورت زیر باشند

به طوریکه :

آنگاه با استفاده از شبه کد زیر مقادیر p1 و p2 را محاسبه می کنیم


حال می توان با استفاده از مقادیر p2 سطر های بردار y را به صورت زیر بازچینی کرد

این عمل را بازچینی بردار y را بوسیله بردار مرجع x می نامیم
قضیه 1 :اگر x1 و x2 دو بردار در فضای RN باشند و x1 نا مساوی با x2 باشد و x1(i)>x2(i) برای بعضی مقادیر i برقرار باشد آنگاه :

 

3- الگوریتم خوشه بندی GAGR
1-3 نمایش کروموزوم ها
در هر الگوریتم تکاملی نمایش کروموزوم یکی ساز مسائل مهم آن الگوریتم است در واقع نحوه نمایش کروموزوم ساختار الگوریتم و مسئله را نشان می دهد هر کروموزوم از یک سری ژن هایی تشکیل شده است این ژن ها می توانند یک مقدار دودویی یک عدد اعشاری و یا یک عدد صحیح و یا یک سیمبل باشند در بسیاری از الگوریتم های تکاملی از اعداد دودویی در ژن ها استفاده می شود میشل ویز بررسی های گسترده ای برای مقایسه مقادیر حقیقی و دودویی در ژن ها انجام داد و این بررسی ها نشان داد اعداد حقیقی کارایی بهتری در زمان الگوریتم دارند. بنابراین با توجه به این موضوع و ساختار مسئله ما از مقادیر حقیقی در ژن ها استفاده می کنیم
برای نمایش کروموزوم ما از روش های معمول در خوشه بندی استفاده می کنیم بدین صورت که هر کروموزوم رشته ای از اعداد حقیقی به طول M=N*K است به طوری که N بعد فضای ویژگی مسئله را نشان می دهد و K معرف تعداد خوشه ها است

مرکز اولین خوشه بوسیله N مقدار اول در بردار نشان داده شده، مرکز دومین خوشه بوسیله N مقدار دوم در بردار نشان داده شده و همینطور مرکز بقیه خوشه ها .

 

2-3 مقداردهی جمعیت
برای ایجاد جمعیت اولیه از تابع راندوم برای تولید کروموزوم ها استفاده شده است نکته ای که در تولیید جمعیت باید ملاحظه شود ایت است که در تولید یک کروموزوم دو نقطه ( مرکز خوشه) برابر تولید نشوند پس از این که جمعیت اولیه به صورت کامل تولید شد برای هر کروموزوم تولید شده با توجه به مراکز خوشه ها طبق رابطه زیر هر داده را به نزدیکترین خوشه مجاور نسبت می دهیم

mk مرکز k امین خوشه است.

 

3-3 تابع ارزش
برای انتخاب یک جواب مناسب برای مسئله نیاز به یک تابع ارزش قوی است که بتواند کروموزوم ها را به خوبی ارزیابی کند یک ملاک ارزیابی که در اکثر الگوریتم های خوشه بندی استفاده می شود مجموع مجذور خطا است که به صورت زیر محاسبه می شود

در رابطه بالا مجذور فاصله داده های ی خوشه i تا مرکز خوشه محاسبه می شود و این فاصله ها برای تمام خوشه ها با یکدیگر جمع می شود. زمانی که هر خوشه فقط یک داده داشته باشند مقدار بالا صفر می شود.در الگوریتم خوشه بندی اگر مراکز خوشه ها به درستی انتخاب نشود این عدد بسیار بزرگ می شود و هر چه مراکز خوشه ها به داده های خوشه نزدیکتر باشد مقدار مجذور فاصله کم می شود به همین دلیل ما از معکوس مقدار بالا به عنوان تابع ارزش استفاده می کنیم

اگر مراکز خوشه ها در یک کروموزوم به درستی انتخاب شود مجموع مجذور خطا کم شده و ارزش کروموزوم افزایش می یابد

 

4-3 عملگرهای تکاملی
1-4-3 ترکیب
هدف اصلی عمگر ترکیب در الگوریتم ژنتیک ایجاد کروموزوم های جدید از روی کروموزوم های والد است یک عملگر ترکیب ساده مقداری از ژن های یک والد را با والد دیگری جابجا می کند و دو کروموزوم جدید ایجاد می کند در این الگوریتم ما از دو نوع عملگر ترکیب استفاده می کنیم : ترکیب بر پایه مسیر و ترکیب اکتشافی . میزان احتمال وقوع ترکیب در این الگوریتم به صورت وفقی محاسبه می شود اگر fmax بیشترین میزان ارزش در جمعیت جاری باشد و f میانگین ارزش در جمعیت و f' میزان ارزش کروموزوم باشد آنگاه میزان وقوع ترکیب از رابطه زیر محاسبه می شود

برای معرفی عملگر ترکیب بر پایه مسیر از تعاریفی که در بخش قبل آوردیم استفاده می کنیم M1 و M2 دو کروموزوم از یک جمعیت در نظر می گیریم اگر آنگاه وجود دارد و همچنین . با توجه به قضیه 1 اگر و برای بعضی مقادیر i ، انگاه وجود دارد و طبق تعریف 2 فاصله آن تا کمتر است نسبت به فاصله آن تا M1 .طبق رابطه تعریف 4 می توان یک سری متناهی به صورت

و بدست آورد سری بدست آمده از روابط بالایک مسیر بین M1 تا را نشان می دهد به طور مشابه می توانیم یک مسیر بین و M2 ایجاد کنیم از ترکیب این دو مسیر می توان یک مسیر بین M1و M2 ایجاد کرد
عملگر ترکیب بر پایه مسیر ابتدا یک مسیر بین دو کروموزوم والد ایجاد مند و سپس دو نقطه در این مسیر را به عنوان کروموزوم های فرزند انتخاب می کند انتخاب نقاط می تواند به صورت راندوم باشد و یا می توان از چرخ رولت و یا تورنمنت استفاده کرد
روش بالا را با یک مثال شرح می دهیم M1 و M2 دو کروموزوم هستند که هر کدام سه مرکز خوشه دوبعدی را نشان می دهند


مسیر بین M1 و M2 طبق روابط بالا به صورت زیر است

 

اما بعضی اوقات در روش ترکیب بر پایه مسیر که در بالا معرفی شد یک مشکل پیش می آید آنهم زمانی که والدین بسیار به همدیگر نزدیک باشند واضح است که در چنین شرایطی مسیر بین دو والد به شدت کم می شود برای رفع این مشکل ما از یک حد آستانه استفاده می کنیم به گونه ای که اگر فاصله دو والد از حد آستانه بیشتر بود از ترکیب مسیری استفاده شود و در غیر این صورت ما از ترکیب دیگری استفاده کنیم ترکیب دیگری در زمان نزدیک بودن والدین استفاده می شود ترکیب اکتشافی است در این روش اگرx و y دو کروموزوم والد باشند و x از y بهتر باشد (طبق تابع ارزش) آنگاه دو کروموزوم جدید به صورت زیر بدست می آید :

R یک عدد تصادفی با توزیع یکنواخت در بازه {0,1} است
2-4-3 جهش
جهش در الگوریتم تکاملی عبارت است از تغییر یک یا چند ژن در یک کروموزوم انتخاب شده بایک احتمال خاص. عمل جهش باعث می شود تا الگوریتم بتواند فضاهای بیشتریو گسترده تری در فضای جستجو بررسی کند و این امر تا حدی به الگوریتم کمک می کند تا در بهینه محلی گیر نکند در این روش ما احتمال جهش را هم مانند احتمال ترکیب به صورت وفقی محاسبه می کنیم نحوه محاسبه این احتمال در رابطه زیر آمده است

مقدار k2 و k4 در رابطه بالا برابر 0.5 است و fmax بیشترین میزان ارزش در جمعیت جاری و f^ میانگین ارزش در جمعیت و f میزان ارزش کروموزومی که برای عمل جهش انتخاب شده است
با توجه به روابط pc و pm این گونه به نظر می رسد که برای راه حل هایی با تابع ارزش بالا مقدار pc و pm کم می شود و برای راه حل هایی با تابع ارزش پایین مقدار احتمال pc و pm افزایش می یابد. در الگوریتم ژنتیک اگر از کروموزوم هایی با تابع ارزش بالا جهت عمل ترکیب و جهش استفاده شود همگرایی الگوریتم افزایش پیدا می کند و اگر از کروموزوم هایی با تابع ارزش کم استفاده شود مسئله ما با احتمال بسیار کمتری در بیشنه های محلی گیر می کند برای فرار از بیشینه های محلی اغلب از راه حل هایی با ارزش کمتر از میانگین جهت ترکیب و جهش استفاده می شود مقدار احتمال pc و pm برای کروموزوم هایی با بیشترین مقدار ارزش برابر صفر است که این باعث می شود تا این کروموزوم های بدون تغییر به نسل بعد خود منتقل شوند.
عملگر جهش در این مسئله به این صورت است اگر fmin و fmax بیشترین و کمترین مقدار ارزش در جمعیت جاری باشد آنگاه یک عدد (δ) با توزیع یکنواخت در بازه [+R , -R] تولید می کنیم.

اگر بیشترین و کمترین مقدار در i مین بعد از داده ها را mimax و mimin بنامیم آنگاه جهش در i مین عنصر به صورت زیر انجام می شود

 

5-3 تشریح الگوریتم GAGR
در این الگوریتم هر کروموزوم نشان دهنده مراکز خوشه هاست و هر خوشه توسط تابع ارزش ارائه شده ارزشش بررسی می گردد انتخاب کروموزوم ها برای عمل ترکیب توسط روش چرخ رولت انجام می شود در این روش کروموزوم هایی که ارزش بالاتری دارند از شانس بالاتری برای انتخاب دارند احتمال ترکیب وجهش در این الگوریتم به صورت وفقی محاسبه می شود برای عمل ترکیب از دو روش استفاده شده است روش ترکیب بر پایه مسیر و ترکیب اکتشافی در هر سری تکرار الگوریتم بهترین کروموزوم انتخاب شده و به عنوان کروموزوم مرجع در نظر گرفته می شود سپس کل جمعیت کروموزوم ها طبق تعریف 5 بازچینی می شوند این امر باعث جلوگیری از انحطاط در کروموزوم ها می شود این الگوریتم پس از مقدار مشخصی از تکرار خاتمه یافته و بهترین کروموزوم به عنوان پاسخ ارائه می شود
مراحل الگوریم GAGR :
1- ایجاد جمعیت اولیه به صورت راندوم با این شرط که در یک کروموزوم دو مرکز خوشه همسان نداشته باشیم و نسبت دادن داده ها به خوشه ها در هر کروموزوم به طوری که هر داده به خوشه ای نسبت داده می شود که کمترین فاصله را تا مرکز آن خوشه داشته باشد
2- ارزیابی کروموزوم ها و قرار دادن بهترین کروموزوم در pbest
3- اگر شرط توقف وپایان برقرار نیست برو به مرحله 4 ، در غیر این صورت pbest را به عنوان جواب بهینه انتخاب کن
4- کروموزوم های والد را برای عمل ترکیبو جهش انتخاب کن
5- انجام عمل ترکیب بر روی کروموزوم های انتخاب شده با توجه به احتمال ترکیب
6- انجام عمل جهش بر روی کروموزوم های انتخاب شده با توجه به احتمال جهش
7- ارزیابی جمعیت جدید
8- مقایسه بدترین کروموزوم از نسل جدید با pbest اگر بدترین کروموزوم از pbest بهتر بود جایگزینی آن در pbest و حذف pbest قبلی
9- پیدا کردن بهترین کروموزوم از نسل جدیدو تعویض آن با pbest
10- انتخاب pbest به عنوان مرجع وبازچینی جمعیت طبق رابطه 5
11- بازگشت به مرحله 3

 

4- تحلیل کارایی الگوریتم GAGR
همانطور که بیان شد اکثر الگوریتم هایی خوشه یابی که بر پایه ژنتیک عمل می کنند اما این مشکل در روش ارائه شده به طور چشمگیری کاهش پیدا کرده است برای مثال در الگوریتم ژنتیک ساده (که در آن ژن های کروموزوم بازچینی نمی شوند ) اگر M1=[1.2, 2.1, 3.3,3.3, 2, 3] نشان دهنده سه مرکز خوشه دو بعدی باشد و M2 = [3.3,3.3,2, 3 ,1.2, 2.1] کروموزوم دیگری از همین داده ها باشد آنگاه از ترکیب برشی این دو از نقطه دوم در کروموزوم ها بردارهای [3.3,3.3,3.3 , 3,3, 2, 3] و[1.2,2.1,2,3,1.2, 2.1] بدست می آید که در هر دو این کروموزوم ها مرکز خوشه هایی با مقادیر یکسان داریم و هر دو آنها نامعتبر هستند که در الگوریتم ارائه شده پس از بازچینی ژن ها در کروموزوم این مسئله تا حد زیادی رفع شده است.
علاوه بر این مشکل انحطاط در زمانی که کروموزوم های نا مساوی داریم هم اتفاق می افتد برای مثال اگر M1=[1.1,1, 2.2, 2,3.4 ,1.2] و M2=[3.2,1.4 ,1.8 ,2.2,0.5,0.7] و اگر M1 رابه عنوان مرجع در نظر بگیریم M2 به صورت M2'=[0.5,0.7,1.8 ,2.2,3.2,1.4] بازچینی می شود شکل یک نتایج حاصل از ترکیب M1 وM2 ونتایج حاصل از ترکیب M1 وM2' را نشان میده همانطور که در شکل پیداست نتایج مربوط به M1 وM2' مفیدتر و به مرکز داده ها نزدیک تر است

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله   10 صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله یک الگوریتم ژنتیک جدید همراه با بازچینی مجدد