فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود پایان نامه برنامه ریزی استراتژیک برای مدیریت مخازن نفت و گاز ایران

اختصاصی از فی توو دانلود پایان نامه برنامه ریزی استراتژیک برای مدیریت مخازن نفت و گاز ایران دانلود با لینک مستقیم و پر سرعت .

دانلود پایان نامه برنامه ریزی استراتژیک برای مدیریت مخازن نفت و گاز ایران


دانلود پایان نامه برنامه ریزی استراتژیک برای مدیریت مخازن نفت و گاز ایران

برنامه ریزی استراتژیک برای مدیریت مخازن نفت و گاز ایران

 

 

 

 

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

تعداد صفحه:122

فهرست مطالب :

برنامه ریزی استراتژیک برای مدیریت مخازن نفت و گاز ایران. ۱
مقدمه. ۳
تعریف مخزن شکاف دار. ۵
فرایند جا به جایی نفت با گاز یا با آب تحت « ریزش ثقلی»۸ ۶
۱-۱٫ میدان نفتی فهود ( عمان )۳۷ ۱۸
۲-۱٫ میدان نفتی «ابکتون» (مکزیک)۴۱ ۱۹
۳-۱٫ میدان نفتی «اسپرابری» (امریکا)۴۲ ۲۰
۴-۱٫ بررسیهای آزمایشگاهی۴۴ ۲۱
۱-۲٫ تاریخچه مختصر بررسیهای میدانی. ۲۴
۱-۱-۲٫ میدان نفتی « زلتون» ( ناصر)۴۷ ۲۴
۲-۱-۲٫ میدان نفتی « قوار »۴۹ ۲۵
۳-۱-۲٫ میدان نفتی « انتظار»۵۲ ۲۶
۴-۱-۲٫ میدان نفتی « لیک ویو»۵۵ ۲۶
۵-۱-۲٫ میدان نفتی « فهود»۵۷ ۲۷
۶-۱-۲٫ میدان نفتی هفتکل۵۹ ۲۸
۷-۱-۲٫ میدان نفتی « هندیل »۶۱ ۲۹
۸-۱-۲٫ میدان نفتی « ابکتون »۶۳ ۳۰
۱۰-۱-۲٫ « دکسترا»۷۵ ۳۱
۲-۲٫ سایر تجربههای آزمایشگاهی. ۳۳
۱-۲-۲٫ آزمایش« ترویلگر و همکاران»۷۹ ۳۳
۳-۲-۲٫ آزمایشهای تخلیه نفت با روش گرانروی توسط انستیتو نفت فرانسه۸۳ ۳۴
۴-۲-۲٫ آزمایشهای سروش و سعیدی۸۶ ۳۶
۵-۲-۲٫ آزمایشهای فشار موئینگی توسط انستیتو نفت فرانسه۹۰ ۳۶
۷-۲-۲٫ آزمایشهای «هاگورت»۹۳ ۳۸
۳٫ مهم ترین عوامل اقتصادی بازیافت نفت از مخازن نفتی ایران کدامند؟. ۴۵
۱-۳٫ تزریق گاز غیر امتزاجی. ۴۶
۱-۱-۳٫ تزریق گاز هیدروکربوری.. ۴۶
۲-۱-۳٫ تزریق گاز غیر هیدروکربوری.. ۵۰
۱-۲-۱-۳٫ تزریق هوا یا تزریق گاز ازت غیر خالص…. ۵۳
۲-۳٫ تزریق گاز امتزاجی. ۵۴
۳-۳٫ تزریق «آب توان یافته»۱۲۷ ۵۷
۴-۳٫ حفاری افقی و بهبود تجهیزات روی زمینی. ۶۱
۱-۴-۳٫ بهبود تجهیزات روی زمینی. ۶۲
۱-۴٫ الگوی بهینه تخصیص گاز. ۶۴
۲-۴٫ بازار آینده نفت.. ۶۴
۶٫ جمع بندی و نتیجه گیری.. ۶۹
منابع. ۷۲

چکیده :

ایران دارای یکی از بزرگ ترین ذخایر « نفت در جا »1 در دنیاست که حجم اولیه آن بیش از 450 میلیارد بشکه تخمین زده می­شود. از این مقدار حدود 400 میلیارد بشکه در مخزن « شکاف دار»2 و بقیه آن در مخازن « تک تخلخلی »3 قراردارند.

از این مجموعه بیش از 91 میلیارد بشکه نفت خام یعنی بیش از 20 درصد قابل برداشت است. به علاوه باید توجه داشت که متوسط بازیافت نفت خام از مخازن شکاف دار تا حدودی کمتر از مخازن تک تخلخلی با همان خصوصیات است.

هدف اصلی این نوشته بررسی بازیافت اقتصادی و قابل قبول نفت از این مخازن عظیم است. این امر نه­ تنها به سود کشور ایران است بلکه سایر کشورهای جهان نیز از آن منتفع می­شوند. برای بررسی این موضوع کلیدی لازم است هر یک از عوامل اصلی مهندسی مخازن نفت به شرح زیر مطالعه شوند.

  • چرا ضریب بازیافت نفت از مخازن ایران در مقایسه با نقاط دیگر جهان پایین تر است؟
  • موقعیت عملی بازیافت نفت از مخازن « تک تخلخلی » و « شکاف دار» ایران چگونه است؟
  • مهم ترین عوامل اقتصادی بازیافت بیشتر نفت از مخازن ایران کدام­اند؟
  • حداکثر برداشت از نفت در جا با در نظر گرفتن فرایند تولید اولیه و ثانویه به چه میزان است؟
  • چگونه می­توان سرمایه گذاری لازم جهت تزریق گاز مورد نیاز به میزان 20 میلیارد پای مکعب در روز به مخازن نفتی را تامین کرد؟

برای بررسی ظرفیت­های ممکن بازیافت و استحصال نفت از مخازن کشف شده موجود، مطالعه گسترده مخازن نفت و گاز کشور چه در خشکی و چه در مناطق دریایی لازم به نظر می­رسد.

به منظور انجام این مطالعات به زمان، نیروی انسانی متخصص و حمایتهای مالی نیازمندیم. این کار لزوماً باید از طریق «مدل سازی مفهومی »4 از تمام مخازن موجود کشور انجام گیرد. با انجام این روش می­توان کلیه مخازن نفت و گاز کشور را طی دوره زمانی قابل قبول و با هزینه معقول مطالعه نمود، و این در حالی است که از کیفیت کار نیز کاسته نخواهد شد.

قبل ورود به مباحث اصلی، بهتر از به طور اجمال فرق­های اساسی بین مخازن شکاف­دار و تک تخلخلی را بیان کنیم. تفاوتهای اصلی مخازن نفتی شکاف­دار و تک تخلخلی به شرح زیر خلاصه می­شود

تعریف مخزن شکاف دار

مخزن شکاف دار مخزنی است که در ساختار آن شکستگی یا ترک وجود داشته باشد ضمن آن که این شکاف­ها شبکه­ای را ایجاد کنند. این شبکه می­تواند تمام یا بخشی از مخزن نفت را شامل شود. در ساختار این شبکه هر یک از سیال­ها می­توانند درون شبکه شکاف­ها از هر نقطه به نقطه دیگر جریان یابند. مثال­های بارز مخازن شکاف­دار در ایران به مفهوم کامل آن، مخازن نفتی هفتکل، گچساران و آغاجاری است. مخازن کرکوک در عراق و « کان ترل»5 در مکزیک از نمونه­های دیگر این مخازن به شمار می­روند. نمونه­های مخازن شکاف دار غیر کامل، مخازن بی بی حکمیه، بینک، مارون و اهواز است. به بیان دیگر، در مخازن مذکور وجود شبکه­ شکستگی­های نامنظم در مخزن، کل ساختار مخزن را شامل نمی­شود.

مخازن شکاف دار، مرکب از سنگهای شکسته با فضاهای کوچک خالی بین آنها است و این شکستگی­ها به صورت منظم و غیرمنظم تشکیل شده­اند. در این گونه مخازن « حفره­ها »6 و حتی غارهای بزرگ می­تواند نیز وجود داشته باشد. فواصل شکاف­های افقی معمولاً از مواد غیر قابل نفوذ پر شده­اند، در حالی که فواصل شکاف­های عمودی غالباً خالی هستند. بنابراین چنین مخازنی دارای دو گونه بریدگی است: یکی شکافها یا شکستگی­های باز و توخالی و دیگری لایه­های افقی نازک غیر قابل نفوذ.

« بلوک­های ماتریسی»7 بر حسب فاصله بین دو گسستگی تعریف می­شوند. این گسستگی­ها می­توانند فاصله بین دو لایه قابل نفوذ یا دو لایه غیر قابل نفوذ افقی و یا فاصله بین دو لایه قابل نفوذ و غیر قابل نفوذ باشند.

فرایند جا به جایی نفت با گاز یا با آب تحت « ریزش ثقلی»8

جا به جایی نفت چه در مخازن تک تخلخلی و چه در مخازن شکاف دار شبیه یکدیگر است9، هر چند که مکانیسم تزریق گاز یا آب در هر یک از این دو نوع مخزن با یکدیگر متفاوت است. به بیان دیگر، در مخازن شکاف­دار به علت نفوذ­پذیری کم سنگ مخزن، بخشی از گاز یا آب تزریقی وارد سنگ مخزن شده و بقیه گاز یا آب تزریقی به ناچار از طریق شکافها سنگ­های با نفوذ­پذیری کم را دور می­زند، در حالی که در مخازن تک تخلخلی، سیال تزریق شده از خلل و فرج به هم پیوسته عبور می­کند.

به هر حال جریان سیال تزریقی چه در مخازن تک تخلخلی و چه در مخازن شکاف­دار از قوانین خاص خود تبعیت می­کند، ولی سازوکار حاصل در هر دو حالت تقریباً یکسان است.

وجود شکستگی­های موجود در مخازن شکاف­دار در مقایسه با مخازن تک تخلخلی دارای ویژگیهای زیر است:

الف ـ فرایند « ریزش ثقلی» و در مخازن شکاف­دار در مقایسه با مخازن تک تخلخلی سرعت نسبی بالاتری دارد. دلیل این امر آن است که نفوذپزیری بسیار پایین تر سنگ مخزن در مقایسه با نفوذپذیری شکافها موجب می­شود که سطح گاز و نفت در شکافها پایین تر از سطح آب و گاز در بلوک­های ماتریسی نفتی قرار گیرد. به ترتیبی مشابه می­توان گفت که سطح آب و نفت در شکافها از سطح آب و نفت در بلوکهای ماتریسی بالاتر است.

بر طبق آزمایشهای انجام شده در مخازن تک تخلخلی با نفوذپذیری مثلاً یک میلی دارسی، جریان « ریزش ثقلی» به زمان بسیار طولانی تری در مقایسه با مخازن شکاف­دار با همان نفوذپذیری نیاز دارد.

ب ـ در سیستم مخازن شکافدار، نفت تولید شده از سنگ مخزن، در فاصله­های دورتری از « چاه­های تولیدی » به دست می­آید. لذا به دلیل بهره­وری بالا در مخازن شکاف­دار، فاصله چاه­های تولیدی از یکدیگر به مراتب بیش از فواصل چاه
­های تک تخلخلی در نظر گرفته می­شود.

ج ـ وجود شکافها، به تفکیک گاز یا آب از نفت کمک می­کند. این امر باعث می­شود که میزان گاز اضافی یا آب اضافی قابل تولید در ستون نفت، کمتر شده و بدین ترتیب انرژی مخزن با بازدهی بیشتری حفظ می­شود.

د ـ فرایند « همرفت حرارتی »10 در مخازن شکاف­دار موجب ایجاد نفت اشباع نشده در ستون نفتی می­شود، حتی هنگامی که فشار مخزن به پایین تر از نقطه اشباع برسد. این فرایند را اطلاحاً « کاهش فشار نقطه اشباع »11 می­نامند. در نتیجه تا وقتی که عملاً گازی در مخزن تزریق نمی­شود، آثار ریزش ثقلی افزایش می­یابد؛ در غیر این صورت گاز ایجاد شده در درون سنگ، نفوذپذیری سنگ را کاهش می­دهد.

ه ـ وجود شکاف­ها باعث یکنواخت تر شدن فشار آب یا گاز یا نفت در مخازن شکاف­دار می­شود، لذا سطوح آب و نفت یا گاز و نفت یکنواخت تر خواهد شد.

و ـ فرایند اشاعه « گاز در گاز »12 یا « نفت در نفت »13 و یا « گاز در نفت»14 موجب به تعادل رسیدن ترمودینامیکی هر چه سریع تر سیالات موجود در مخزن می­شود. به همین دلیل است که در جریان شبیه سازی این مخازن، فرایندهای «همرفت ـ اشاعه »15 را نمی­توان نادیده گرفت.

با توجه به مزیت­های فوق، مخازن شکاف­دار با نفوذپذیری کم را می­توان از نظر تجاری، با سرعت زیاد و هزینه­ها ی نسبتاً پایین تر از مخازن تک تخلخلی با همان مشخصات تخلیه کرد.

مخازن شکاف­دار دارای معایب زیر نیز هستند:

الف ـ وجود گسستگی ­های افقی باز یا بسته، تاثیر فرایند ریزش ثقلی بین گاز و نفت یا نفت و آب را در مقایسه با مخازن تک تخلخلی کاهش می­دهد.

این امر در مقایسه با مخازن تک تخلخلی نشان می­دهد که بازیافت نفت با یک ضخامت نفتی مساوی از یک بلوک نفتی در مخزن شکاف­دار بازیافتی کمتر از مخازن تک تخلخلی پیوسته دارد. این امر به دلیل وجود « ارتفاع ناحیه نگهدارنده »16 و « خصوصیت موئینگی سنگ مخزن»17 است. در واقع در مخازن شکاف­دار، ضخامت کل سنگ مخزن در جهت عمودی به قطعات یا بلوکهای جدا از هم تقسیم می­شود و این بلوک­ها به طور مشابه با خصوصیاتی متفاوت تکرا می­شوند. در صورتی که در مخازن تک تخلخلی در وضعیت فوق این گونه قطعات جدا از هم وجود ندارد. لذا میزان نفت غیر قابل استحصال در مخان تک تخلخلی بیش از مخازن شکافدار بوده و در حالیکه سرعت استحصال نفت در مخازن شکاف­دار نسبت به مخازن تک تخلخلی در شرایط مساوی بالاتر است.

بعضی از افراد به دلیل عدم شناخت مکانیسم بازیافت نفت در مخازن شکاف­دار استنباط نادرستی دارند. و تصور می­کنند که در مخازن شکاف­دار همواره یک فشار « موئینگی پیوسته»18 درون بافتی وجود دارد. تولید از مخازن شکاف­دار در کشورهای مختلف نشان می­دهد که در بهره­برداری دراز مدت از آنها، فرایند « موئینگی پیوسته » در این گونه مخازن قابل توجه نیست؛ برای مثال، اگر فشار موئینگی درون بافتی پیوسته­ای در میادین هفتکل یا آغاجاری وجود می­داشت میزان بازیافت نفت از آنها به وسیله گاز به 60 درصد می­رسید، در حالی که ضریب بازیافت نفت در میدان هفتکل در بخش گازی آن به حدود 28 درصد و در آغاجاری به 35 درصد می­رسد.

ب ـ کاربرد روش امتزاجی جهت بالا بردن ضریب بازیافت نفت در مخازن شکاف­دار، مستلزم استفاده از حجم زیادی کندانسه است که این امر از نظر اقتصادی توجیه پذیر نیست.

بنابراین نتیجه می­گیریم که فرایند جا به جایی نفت از طریق گاز یا آب در مخازن شکاف­دار و تک تخلخلی مشابه یکدیگر است، با این تفاوت که بازیافت نفت در مخازن شکاف­دار به دلیل شکستگی سنگ مخزن و کوتاه شدن ارتفاع بلوک­های ماتریسی کمتر از مخازن تک تخلخلی است.

  1. چرا ضریب بازیافت نفت از مخازن ایران در مقایسه با نقاط دیگرجهان پایین تر است؟

قبل از ورود به این بحث لازم است مکانیسم­های جا به جایی نفت را به دو روش زیر مورد بررسی قرار دهیم.

الف ـ « جا به جایی نفت به طرف جلو»19 یا به عبارت بهتر « جا به جایی با استفاده از فشار»20

ب ـ جا به جایی از طریق « ریزش ثقلی» یا به عبارت بهتر « جا به جایی به صورت طبیعی »21

که بر اثر اختلاف وزن مخصوص بین مایع تزریقی و نفت ایجاد می­شود. این فرایند در یک سیستم متخلخل مرتفع به صورت فیزیکی اندازه­گیری شده22، و به لحاظ نظری نیز مشخص شده است23 که اختلاف فاحشی بین بازیافت نفت در دو روش فوق الذکر وجود دارد. بازیافت نفت با روش کندتر « ریزش ثقلی» از بازیافت نفت با روش سریع « جا به جایی رو به جلو» بیشتر است.

اما در اوایل دوره تولید، روش بازیافت نفت از طریق جا به جایی سریع رو به جلو از روش جریان نفت از طریق ریزش ثقلی، عملکرد بهتری دارد. بر اساس میزان تزریق، بازیافت نفت از طریق ریزش ثقلی می­تواند تا دو برابر روش جا به جایی رو به جلو یا « استفاده از فشار» باشد24.

از مجموعه بررسی­ها چنین بر می­آید که باز یافت نفت در مخازن تک تخلخلی اصولاً تابعی است از نفوذپذیری سنگ مخزن، سرعت جا به جایی، فشار موئینگی و میزان « سیال دوستی»25 سنگ مخزن. در صورتی که سایر عوامل فوق ثابت فرض شوند، میزان نفت اشباع شده باقیمانده تابعی از سرعت جا به جایی نفت خواهد بود. در این صورت در حالت جا به جایی از طریق ریزش ثقلی، میزان نفت باقی مانده کمتر و در حالت جا به جایی با فشار یا رو به جلو، میزان نفت باقی مانده بیشتر خواهد بود.

قابل ذکر است که در مخازن شکاف­دار، شکستگی­ها به مثابه محدود یا اضلاع بلوکها عمل می­کند و به همین دلیل فرایند جا به جایی رو به جلوی نفت در چنین سیستمی به جز در حوزه­های خیلی نزدیک به چاه­های تزریقی کارامد نیست.

فرایند سریع جا به جایی نفت به طرف جلو، همرا با فشار موئینگی چندان قابل توجه نیست، زیرا نیروهای « گرانروی»26 در حال حرکت از نیروهای ناشی از فشار موئینگی بیشتر است. این در حالی است که در فرآیند جا به جایی بر اساس ریزش ثقلی، به علت آهسته بودن جا به جایی، فشار موئینگی نقش بارزی در نگهداری نفت در بلوکها ایفا می­کند. از طرف دیگر، سرعت بالای تزریق در سیستم تک تخلخلی موجب می­شود که سیال تزریقی از بخش میانی خلل و فرج­های کوچک عبور نموده و لذا نفت قابل ملاحظه­ای بر جای می­گذارد.

برای مقایسه عوامل کاهش بازیافت نفت ازمخازن ایران با مخازنی که دارای بازیافت بالاتری هستند لزوماً باید این مخازن را تحت شرایط یکسان مقایسه کرد. به عبارت دیگر، ناچاریم پرتقال را با پرتقال و سیب را با سیب مقایسه کنیم، نه اینکه سیب را با پرتقال.

به عنوان مثال ما نمی­توانیم میدان نفتی «لالی»27 ایران را با 10 درصد باز یافت با مخزن «لیک ویو»28واقع در امریکا با77 در صد بازیافت مقایسه کنیم. مخزن لالی مخزنی سنگ آهکی شکاف دار با میانگین نفوذ پذیری 1/0 میلی دارسی با فشار موئینگی بالا و عمدتاً «نفت دوست»29 است، در صورتی که مخزن لیک ویو30 مخزنی تک تخلخلی از جنس سنگ ماسه­ای با نفوذپذیری 2000 میلی دارسی و با فشار موئینگی بسیار پایین و «آب دوست»31 است. اگر مخزن لالی در امریکا کشف و از آن بهره­برداری می­شد حتی 10 درصد نفت آن را بهره­برداری نمی­کردند زیرا آنها با استفاده از روش سریع در بهره­برداری، این میدان را بسیار کمتر از آنچه که می­توانست تولید کند به اتمام میرساندند.

مثال مناسب دیگر مقایسه مخزن شکاف دار «اسپرا­بری»32 در امریکا با میانگین نفوذ پذیری 1/0 میلی دارسی با میدان نفتی هفتکل در ایران است.این دومیدان دارای نفوذ پذیری تقریباً یکسان هستند، اما میزان نسبی تولید روزانه از میدان نسبی هفتکل به مراتب پایین تر از میدان اسپرابری در ابتدای بهره­برداری می­باشد.

ضریب بازیافت نفت به صورت طبیعی در هفتکل حدود 22 درصد است در صورتی که ضریب باز یافت طبیعی نفت در میدان اسپرابری کمتر از 8 درصد بوده است، ولی آنها بیش از 3000 حلقه چاه در ایران حفر کردند، در حالی که میزان نفت در جا در این میدان 2 میلیارد بشکه و میزان نفت در جا در میدان هفتکل حدود 7 میلیارد بشکه است و حال آنکه تنها حدود 40 حلقه چاه در آن حفر شده است. پس از یک دوره کوتاه برداشت نفت به صورت طبیعی از میدان اسپرابری، برای مدت طولانی آب و متعاقب آن برای مدت کوتاهی co2 تزریق شد، در نتیجه کل بازیافت نفت از مخزن فوق تا کنون حدود 12 درصد بوده است.

در صورتی که فشار میدان نفتی هفتکل را به حد اولیه آن در تاج مخزن یعنی PSI 1420 33 رسانده شود، ضریب بازیافت نفت این مخزن به بیش از 27 درصد می­رسد. از سوی دیگر اگر می­توانستیم فشار مخزن هفتکل را به حد اولیه فشار مخزن اسپرابری یعنی معادل PSI2250 افزایش دهیم، ضریب بازیافت نفت مخزن فوق به حدود 35 درصد می­توانست برسد.

تفاوت اصلی بازیافت نفت در میدان هفتکل و اسپرابری نشان دهنده آن است که میدان هفتکل اولاً با سرمایه­گذاری بسیار پایین تر به نحو بهتر و صحیح تری بهره­برداری شده است و ثانیاً تخلیه سریع از مخازن شکاف­دار، همواره افت شدیدی در بازیافت نفت به دنبال دارد.

نمونه­های بالا نشانگر آن است که مخازن ایران با حداکثر ضریب بازدهی، تحت شرایط تخلیه طبیعی قرار داشته­اند و نباید آنها را با مخازنی که از ویژگی­های دیگری برخوردارند مقایسه کرد. در حقیقت ضریب بازیافت نفت در مخازن مشابه در کشور امریکا یا هر جای دیگر، فاصله بسیار زیادی با ضریب بازیافت نفت در ایران دارد، چنان که به نمونه­ای از آن در مورد هفتکل اشاره شد. بنابراین ضریب بازیافت نفت در ایران را نباید با هیچ جای دیگر جهان که دارای خصوصیات مخزنی متفاوت و دارای طبیعت تولیدی خاص خود است و یا از ویژگی­های دیگری برخوردارند مقایسه کرد.

با وجود این، در مطالعه تطبیقی ضرایب نفت از مخازن شکاف­دار ایران با مخازن مشابه در سایر نقاط جهان باید به موارد زیر توجه کرد.

الف ـ کشورهایی که دارای مخازن شکاف­دار از جنس سنگ آهک هستند ( مشابه آن چه در ایران وجود دارد ) غالباً در تملک شرکتهای دولتی است، مانند کشورهای مکزیک، عراق، عمان، لیبی و سوریه. این کشورها اطلاعات کافی در مورد ذخایر نفتی خود منتشر نمی­کنند، به ویژه در مورد ضریب بازیافت نفت از آنها.

ب ـ مخازن نفت کشورهای فوق عموماً شکاف دار است، اما برای مثال مخازن نفتی کشور مکزیک غالباً دارای فشار بسیار بالاتری از « فشار نقطه اشباع»34 است و بخش عمده­ای از بازیافت نفت ناشی از جریان انبساط سیال در سنگ مخزن است، در صورتی که بیشتر میدان­های نفت ایران از ابتدا در حدود فشار نقطه اشباع هستند و از انبساط سیال بسیار کمتری برخوردارند.

بنابراین برای مقایسه ضرایب بازیافت نفت از مخازن مکزیک با مخازن ایران در شرایط تقریباً یکسان، باید میزان بازیافت نفت را از فشار نقطه اشباع تا پایان طول عمر مخزن محاسبه و مقایسه کرد.

ج ـ بعضی از مخازن کشورهای فوق الذکر، حاوی غارهای بزرگ است مانند میدان نفتی کرکوک در عراق35 و یا قوار در عربستان و بعضی دیگر حاوی «حفره­های کوچک»36 مانند بسیاری از ذخایر نفتی مکزیک. ضریب بازیافت نفت از این مخازن به دلیل وجود غارهای بزرگ نفتی یا حوزه­ها به مراتب بیش از ذخایر مشابه آن در ایران است.

د ـ حدود 15 مخزن شکاف­دار در قسمت شمال شرقی سوریه وجود دارد که دارای نفت تقریباً سنگین و فشار کم است. این مخازن به وسیله متخصصین شوروی سابق و بدون تجربه کافی مورد بهره­برداری قرار گرفته بود. میزان بازدهی این مخازن کمتر 16 درصد گزارش شده است که نسبت به موارد مشابه آن در ایران پایین تر است.

ه ـ در بسیاری از نشریات نفتی به میزان « تولید ـ فشار» مخازن مختلف اشاره می­شود، ولی هیچ گاه از بازیافت نهایی دراین مخازن ذکری به میان نمی­آید. این گونه نشریات معمولاً به میزان نفتی که در مدت زمانی معین استخراج می­شود تکیه می­کنند، بنابراین مرجع هستند و کافی در زمینه مقایسه مخازن وجود ندارد.

از توضیحات بالا پیچیدگی مسئله تا حدودی روشن می­شود. به هر حال بر اساس اطلاعات منتشر شده موجود در مورد مخازنی که تا حدودی مشابه مخازن ایران هستند می­توانیم از روش­های درجه بندی استفاده کنیم تا تخمین بهتری از ضریب بازیافت به دست آوردیم. در ذیل به چند نمونه دیگر از این موارد اشاره می­کنیم.

و...

NikoFile


دانلود با لینک مستقیم


دانلود پایان نامه برنامه ریزی استراتژیک برای مدیریت مخازن نفت و گاز ایران

گزارش کارآموزی آماده رشته مکانیک در ساخت مخازن تحت فشار با فرمت ورد(word)

اختصاصی از فی توو گزارش کارآموزی آماده رشته مکانیک در ساخت مخازن تحت فشار با فرمت ورد(word) دانلود با لینک مستقیم و پر سرعت .

گزارش کارآموزی آماده رشته مکانیک در ساخت مخازن تحت فشار با فرمت ورد(word)


گزارش کارآموزی آماده رشته مکانیک در ساخت مخازن تحت فشار با فرمت ورد(word)

همانطور که می دانیم مخازن تحت فشار از جمله تجهیزاتی هستند که نه تنها در شاخه نفت و پتروشیمی بلکه در اغلب صنایع اصلی نظیر نیروگاه و حمل و نقل از کاربرد ویژه و قابل توجهی برخوردار بوده و از اینرو توجه به مقوله طراحی و ساخت آنها از اهمیت ویژه ای برخوردار است . آنچه در این مقاله بدان پرداخته شده است, بیشتر جنبه راهنمائی داشته و هدف ارائه مطالبی است که به نظر نویسنده برای طراحی و ساخت یک مخزن تحت فشار با توجه به استاندارد جهت آشنائی بیشتر با سرفصلهای مندرج در استاندارد ASME و امکان مراجعه به مباحث تکمیلی در هر زمینه در اینجا به معرفی عناوین مزبور میپردازیم.

فهرست :

مقدمه

تعاریف اولیه

مخزن تحت فشار

فشار و دمای کاری

درجه حرارت طراحی (  UG-20)

حداکثر فشار کاری مجاز

فشار تست هیدرواستاتیک ( UG-99 )

ماکزیمم تنش مجاز ( UG-23 )

استحکام اتصالات (  UW-12)

انتخاب مواد

کنترل ورق های ورودی

کنترل لوله های ورودی

کنترل فلنج ها و زانویی ها و دیگر اتصالات ورودی به کارخانه

ابعاد و اندازه ورق ها

دستور برش ورق

پارامترهای کنترل ورق های بریده شده

مونتاژ شل به Head

طریقه محور بندی کردن مخزن ( اکس بندی کردن )

طریقۀ استفاده از شیلنگ تراز

انواع فلنج ها

مونتاژ کردن نازل به شل

 Saddle یا پایۀ مخزن

عدسی یا Head

تست هیدرواستاتیک

رنگ آمیزی

کالیبره کردن کولیس


دانلود با لینک مستقیم


گزارش کارآموزی آماده رشته مکانیک در ساخت مخازن تحت فشار با فرمت ورد(word)

پایان نامه ارزیابی ژئوشیمیایی مخازن گازی حوضه رسوبی کپه داغ

اختصاصی از فی توو پایان نامه ارزیابی ژئوشیمیایی مخازن گازی حوضه رسوبی کپه داغ دانلود با لینک مستقیم و پر سرعت .

پایان نامه ارزیابی ژئوشیمیایی مخازن گازی حوضه رسوبی کپه داغ


پایان نامه ارزیابی ژئوشیمیایی مخازن گازی حوضه  رسوبی کپه داغ

 

 

 

 

 

 

تعداد صفحات : 317

فرمت فایل: word(قابل ویرایش) 

  فهرست مطالب:

عنوان                                  صفحه

فصل اول: مقدمه ........................... 1

فصل دوم: زمین شناسی منطقه کپه داغ ........ 2

2-1-مقدمه ................................ 2

2-2-محل و موقعیت ......................... 2

2-3- ریخت شناسی منطقه .................... 3

2-4- چینه شناسی منطقه .................... 4

2-4-1- پرکامبرین ......................... 4

2-4-1-1- شیستهای گرگان ................... 4

2-4-2- کامبرین- اردویسین ................. 5

2-4-2-1- سازندلالون ....................... 5

2-4-2-2- سازند میلا ....................... 5

2-4-2-3- سازند قلی ....................... 5

2-4-3- سیلورین ........................... 5

2-4-3-1- سازند نیور ...................... 5

2-4-4- دونین ............................. 5

2-4-4-1- سازند پادها ..................... 5

2-4-4-2- سازند خوش ییلاق .................. 6

2-4-5- کربنیفر ........................... 6

2-4-5-1- سازند مبارک ..................... 6

2-4-6- پرمین ............................. 6

2-4-6-1- سازند دورود ..................... 6

2-4-6-2 سازند روته ....................... 6

2-4-6-3- سازند نسن ....................... 6

2-4-7- تریاس ............................. 6

2-4-7-1- سازند الیکا ..................... 6

2-4-7-2- سازند قره قیطان ................. 7

2-4-7-3- گروه آق دربند ................... 7

2-4-7-3-1- سازند سفید کوه ................ 7

2-4-7-3-2- سازند نظر کرده ................ 7

2-4-7-3-3- سازند سینا .................... 7

2-4-7-3-4- سازند شیلی میانکوهی ........... 7

2-4-8- ژوارسیک ........................... 8

2-4-8-1- سازند شمشک ...................... 8

2-4-8-2- سازند کشف رود ................... 9

2-4-8-3- سازند بادامو .................... 12

2-4-8-4- سازند باش کلاته .................. 12

2-4-8-5- سازند خانه زو ................... 12

2-4-8-6- سازند چمن بید ................... 12

2-4-8-7- سازند مزدوران ................... 14

2-4-8-7-1- محل برش الگو................... 14

2-4-8-7-2- گسترش منطقه ای ................ 17

2-4-9- کرتاسه ............................ 17

2-4-9-1- سازند شوریجه .................... 17

2-4-9-1-1 محل برش الگو ................... 17

2-4-9-1-2- گسترش منطقه ای ................ 22

2-4-9-2 سازند زرد ........................ 23

2-4-9-3- سازند تیرگان .................... 23

2-4-9-4- سازند سرچشمه .................... 23

2-4-9-5- سازند سنگانه .................... 23

2-4-9-6- سازند آیتامیر ................... 24

2-4-9-7 سازند آب دراز .................... 24

2-4-9-8- سازند آب تلخ .................... 24

2-4-9-9- سازند نیزار ..................... 24

2-4-9-10- سازند کلات ...................... 25

2-4-10- ترشیر ............................ 25

2-4-10-1- سازند پسته لیق ................. 25

2-4-10-2- سازند چهل کمان ................. 26

2-4-10-3 سازند خانگیران .................. 26

2-4-11- نهشته های نئوژن .................. 26

2-4-12- پلیوسن ........................... 26

2-4-12-1- کنگلومرای پلیوسن .............. 26

2-4-12-2- سازند آقچه گیل ................. 26

2-5- زمین شناسی ساختمانی منطقه ........... 27

2-6-پتانسیل هیدروکربنی منطقه ............. 28

2-6-1- معرفی مخازن گازی کپه داغ .......... 28

2-6-1-1- میدان گازی خانگیران ............. 28

2-6-1-2- لایه بندی مخزن مزدوران ........... 29

2-6-1-3- فشار و دمای اولیه مخزن .......... 30

2-6-2-میدان گازی گنبدلی .................. 30

2-6-2-1- لایه بندی مخزن شوریجه ............ 30

2-6-2-2- فشار و دمای اولیه مخزن .......... 30

فصل سوم: روشهای مطالعه ................... 31

3-1- مقدمه ............................... 31

3-2- دستگاه راک اول ...................... 31

3-2-1- ویژگی های پارامترهای راک – اول .... 33

3-2-2- کل کربن آلی(TOC) ................. 34

3-2-3- اندیس اکسیژن (OI)................... 35

3-2-4- اندیس تولید (PI).................... 35

3-2-5-اندیس هیدروکربن زایی((GI............. 35

3-2-6-اندیس مهاجرت(MI) ................... 35

3-2-7-اندیس نوع هیدروکربن (Hydrocarbon Ttype Index) 35

3-2-8- اندیس هیدروژن (HI) ................. 35

3-2-9-نمودار نسبتهای HI/Tmax HI/OI وS1/TOC و S2/TOC   36

3-2-10-تفسیر داده های راک اول ............ 38

3-3- گاز کروماتو گرافی / طیف سنج جرمی .... 38

3-3-1-گاز کروماتوگرافی درGCMS .......... 39

3-3-1-1-آنالیز گرافهای گاز کروماتوگرافی .. 41

3-3-2-طیف سنج جرمی در GCMS............... 42

3-4-بایومارکرها ( نشانه های زیستی) ....... 44

3-4-1- مقدمه ............................. 44

3-4-1-1- بیومارکرها یا نشانه های زیستی ... 45

3-4-1-2- انواع بیومارکرها ................ 47

3-4-2-پارامتر های بیومارکری برای تطابق، منشا و محیط رسوبی ............................................. 49

3-4-2-1ترپانها (Terpanes) .................. 54

3-4-2-2-اندیس هموهوپان ................... 57

3-4-2-3-نسبت پریستان به فیتان ............ 59

3-4-2-4-نسبت (Isopenoid/n-Paraffin) ........... 60

3-4-2-5-ایزوپرونوئید های غیر حلقوی>C20.... 61

3-4-2-6-باتریوکوکان ...................... 61

3-4-2-7-اندیس اولیانان(Oleanane)........... 61

3-4-2-8-بیس نورهوپانها و تریس نور هوپانها 62

3-4-2-9-اندیس گاماسران ................... 62

3-4-2-10- نسبت(C30/C29Ts) .................. 63

3-4-2-11- -β کاروتن و کاروتنویید......... 63

3-4-2-12- Bicyclic Sequiterpanes..................................... 63

3-4-2-13-کادینانها........................ 63

3-4-2-14- دی ترپانهای دو و سه حلقه ای .... 64

3-4-2-15- فیچتلیت(Fichtelite) ............... 65

3-4-2-16- دی ترپانهای چهار حلقه ای(Tetracyclic Diterpane) 65

3-4-2-17-ترپان سه حلقه ای ..................................... 65

3-4-2-18-ترپانهای چهار حلقه ای ........... 66

3-4-2-19-هگزا هیدرو بنزو هوپانها ......... 66

3-4-2-20-لوپانها(Lupanes) ................. 66

3-4-2-21-متیل هوپان(Methyl Hopanes) ........ 66

3-4-3- استیرانها(Steranes) ................. 67

3-4-3-1-نسبت Rgular Steranes/17α(H)-Hopanes .... 67

3-4-3-2- C26استیران....................... 68

3-4-3-3- استیرانهای (C27-C28-C29) ......... 68

3-4-3-4- اندیس C30-استیران ............... 70

3-4-3-5- دیااستیرانهای(C27-C28-C29) ....... 72

3-4-3-6-نسبت Diasteranes/Regular Steranes ...... 72

3-4-3-7-   3-آلکیل استیران................ 73

3-4-3-8-  4-متیل استیران................. 73

3-4-4- استیروئید های آروماتیکی و هوپانوئید ها    74

3-4-4-1- C27-C28-C29- منو آروماتیک استیروئیدها.. 74

3-4-4-2-(Dia/Dia+Regular)C-Ring Monoaromatic Steroids .. 76

3-4-4-3- C­26-C27-C28تری آروماتیک استیروئید. 76

3-4-4-4- بنزوهوپانها (Benzohopanes) ......... 76

3-4-4-5-پریلن( (Perylene .................... 76

3-4-4-6- m/z 239(Fingerprint) و(Fingerprint) m/z 276     77

3-4-4-7- Degraded Aromatic Deterpane.......................... 77

3-4-4-8-خصوصیات ژئوشیمی نفتها برای تطابق با سنگ منشا 77

3-4-5-بلوغ(Maturation) ..................... 79

3-4-5-1- بیومارکرها بعنوان پارامتری برای بلوغ    79

3-4-5-2-ترپانها .......................... 81

3-4-5-2-1-ایزومریزاسیون هموهوپان 22S/(22S+22R)     81

3-4-5-2-2-نسبت  Βα-Moretane/αβ-Hopanes and ββ-Hopane   82

3-4-5-2-3- نسبت Tricyclic/17α(H)-Hopane........ 83

3-4-5-2-4- نسبت Ts/(Ts+Tm)................. 83

3-4-5-2-5- نسبت C29Ts/(C2917α(H)-Hopane+C29Ts). 84

3-4-5-2-6- نسبت Ts/C3017α(H)Hopane......... 84

3-4-5-2-7- اندیس Oleanane یا 18α/(18α+18β)-Oleanane   84

3-4-5-2-8- نسبت (BNH+TNH)/Hopanes ........ 85

3-4-5-3- استیرانها (Steranes) .............. 86

3-4-5-3-1- نسبت 20S/(20S+20R) .............. 86

3-4-5-3-2-نسبت Ββ/(ββ+αα) .................. 86

3-4-5-3-3- اندیس بلوغ بیومارکرها (BMAI) ... 87

3-4-5-3-4- نسبت Diasterane/Regular Sterane ...... 89

3-4-5-3-5- نسبت 20S/(20S+20R) 13β(H),17α(H)-dia steranes89

3-4-5-4-استیروئید های آروماتیکی Aromatic steroids    89

3-4-5-4-1- نسبت TA/(MA+TA) .............. 89

3-4-5-4-2- نسبتMA(I)/MA(I+II) .............. 90

3-4-5-4-3- نسبتTA(I)/TA(I+II) ............... 91

3-4-5-4-4- نسبتC26-Triaromatic 20S/(20S+20R) .. 91

3-4-5-4-5- منوآروماتیک هوپانوئید (Monoaromatic Hopanoids )   92

3-4-5-4-6- پارامتر MAH .................. 92

3-4-6- تخریب میکروبی (Biodegradation) ....... 93

3-4-6-1- پارامتر های بیومارکری تخریب میکروبی     93

3-4-6-1-1- ایزوپرنوئیدها(Isopernoids) ...... 95

3-4-6-1-2- استیران و دیااستیران(Steranes and Diasteranes) 95

3-4-6-1-3- هوپانها(Hopanes) ............... 95

3-4-6-1-4-   25-نورهوپانها (25-Norhopanes). 96

3-4-6-1-5-C28-C34 30-nor-17α(H)-Hopane ......... 96

3-4-6-1-6- ترپانهای سه حلقه ای............ 97

3-4-6-1-7- دیگر ترپانها................... 97

3-4-6-2- اثرات تخریب میکروبی در تعیین بلوغ و تطابق   97

3-4-7-تعیین سن بوسیله بایومارکرها ........ 97

3-5- ایزوتوپهای پایدار ................... 99

3-5-1- مقدمه ............................. 99

3-5-2- ایزوتوپهای پایدار ................. 99

3-5-2-1- اکسیژن .......................... 100

3-5-2-2- کربن ............................ 102

3-5-2-2-1- ارتباط بین سن زمین شناسی و

نسبت ایزوتوپ کربن نفت و کروژن ............ 106

3-5-2-2-2-کاربرد ایزوتوپ کربن در تعیین

نوع محیط رسوبی، نوع کروژن، نوع نفت و مسیر مهاجرت     108

3-5-2-2-2-1- نمودار سوفر(Sofer) ........... 108

3-5-3- گوگرد ............................. 109

3-5-4– کاربرد ایزوتوپهای پایدار در مخازن گاز و کاندنسیت   111

فصل چهارم: نحوه نمونه برداری ............. 114

4-1-مقدمه ................................ 114

4-2-نمونه گیری از میادین گازی ............ 114

4-2-1- روش نمونه گیری گاز و سیالات مخزن ... 115

4-2-2- آنالیز نمونه های مخازن خانگیران وگنبدلی   117

4-3-داده های شرکت نفت .................... 117

4-3-1-مقاطع و نمونه ها ................... 119

فصل پنجم: بحث و تفسیر .................... 120

5-1- مقدمه ............................... 120

5-2- تعبیر و تفسیر داده های راک اول ...... 120

5-2-1-چاه امیرآباد-1 ..................... 120

5-2-2-چاه خانگیران-30 .................... 125

5-2-2-1-سازند چمن بید .................... 127

5-2-2-2-سازند کشف رود .................... 129

5-3-تعبیر و تفسیر داده های راک اول مقاطع سطحی    132

5-3-1مقطع بغبغو ......................... 132

5-3-2-مقطع خور ........................... 137

5-3-3-مقطع فریزی ......................... 141

5-3-3-1-سازند شمشک ....................... 143

5-3-3-2-سازند باش کلاته ................... 145

5-3-4-مقطع خانه زو .......................147

5-3-4-1-سازند چمن بید .................... 150

5-3-4-2-سازند شمشک ....................... 152

5-3-5-مقطع اردک-آب قد .................... 155

5-3-6-مقطع شورک .......................... 159

5-3-7-نتیجه گیری کلی آنالیز داده های راک-اول     163

5-4-تعبیر و تفسیر داده های گاز کروماتو گرافی     164

5-4-1-مقطع بغبغو سازند کشف رود(G-19) ..... 166

5-4-2-مقطع خور سازند چمن بید(G-11) ....... 167

5-4-3-مقطع اردک آب-قد سازند چمن بید(ABG-15) 167

5-4-4-مقطع شورک- سازند کشف رود(G-10) ..... 168

5-4-5-مقطع بغبغو سازند کشف رود(G-45) ..... 169

5-4-6-نتیجه گیری نهایی آنالیز داده های GC 169

5-5-تعبیر و تفسیر داده های بیومارکر مقاطع سطحی   169

5-5-1-سازند چمن بید ...................... 173

5-5-2- سازند کشف رود ..................... 174

5-5-3- نتیجه گیری نهایی آنالیز بیومارکرهای مقاطع سطحی     182

5-5-4- تعبیر وتفسیر داده های بیو مارکری

و ایزوتوپی میعانات سنگ مخزن مخازن مزدوران و شوریجه   182

5-5-4-1- تشخیص محیط رسوبی سنگ منشاء ...... 182

5-5-4-1-1- نسبت C29/C27 استیران در مقابل نسبت Pr/Ph   183

5-5-4-2- تعیین محدوده سنی سنگ منشاء ...... 184

5-5-4-2-1- نسبت C28/C29 استیران .......... 184

5-5-4-2-2-ایزوتوپ کربن ................... 185

5-5-5- تشخیص لیتولوژی سنگ منشاء .......... 186

5-5-5-1- نسبت DBT/ PHEN در مقابل Pr/Ph .... 186

5-5-5-2-اندیس نورهوپان ................... 187

5-5-5-3- نسبت C22/C21 تری سیکلیک ترپان

در مقابل نسبت C24/C23 تری سیکلیک ترپان ... 188

5-5-5-4- نسبتهای  C24تترا سیکلیک ترپان ... 189

5-5-5-5- ایزوتوپ کربن در مقابل نسبت پریستان به فیتان 190

5-5-5-6- مقایسه نسبتهای بیومارکری ........ 190

5-5-5-7- نتیجه گیری لیتولوژی سنگ منشاء .. 191

5-5-6-تشیخص بلوغ سنگ منشاء ............... 191

5-5-6-1-نمودار C24Tet/C23Tri در مقابل C23Tri/C30Hopane   191

5-5-6-2- نمودار نسبت C30DiaHopan/C30Hopane 192

5-5-6-3- نمودار نسبت Pr/nC17 به Ph/nC18 مخازن     193

5-5-6-4- نتیجه گیری بلوغ سنگ منشاء ....... 194

5-5-7- داده های ایزوتوپی کربن دو مخزن مورد مطالعه    194

5-5-8- تشخیص سنگ منشاء های مخازن مزدوران و شوریجه    194

5-6- تشخیص منشاء تولید سولفید هیدروژن در مخازن گازی کپه داغ ............................................. 196

5-6-1- بررسی ترکیب شیمیایی مخازن ......... 196

5-6-2- فشار و دمای مخازن ................. 198

5-6-3- پتروگرافی سازندهای مخزنی منطقه کپه داغ    198

5-6-4- بررسی آلکانهای نرمال و بیومارکری و آب سازند مخازن 200

5-6-4-1- فراوانی آلکانهای نرمال مخازن .... 200

5-6-4-2- بیومارکر آدامانتان .............. 200

5-6-4-3- مطالعه ترکیبات هیدروکربوری گوگرد دار در مخازن   202

5-6-4-4- مطالعه آب سازندی مخازن .......... 204

5-6-4-5- بررسی بلوغ میعانات گازی مخازن .. 207

5-6-4-6- مقایسه ترکیبات گازی مخازن با هیدروکربورهای سنگ منشاء ............................................. 209

5-6-4-7- ایزوتوپ کربن و گوگرد آلی مخازن .. 209

5-7- نتیجه گیری کلی در مورد منشاء سولفید هیدروژن     212

فصل ششم: نتیجه گیری نهایی ............ 213

پیشنهادات............................. 214

پیوستها............................... 215

منابع و مآخذ ......................... 216

چکیده:

بررسیهای ژئوشیمیایی(راک اول- بیومارکر- ایزوتوپ کربن) برروی سنگ منشا احتمالی کپه داغ شرقی نشان می‌دهد که سازند های کشف رود و چمن بید، با توجه به نوع و بلوغ ماده آلی می‌توانند از سنگهای مادر منطقه محسوب شوند. سازند کشف رود با کروژنی از نوع دلتایی- دریایی در مرحله تولید گاز خشک قرار دارد، در حالیکه سازند چمن بید با کروژنی با منشا دریایی-کربناته در انتهای نفت زایی و در ابتدای تولید گاز تر می‌باشد. آنالیز های بیو مارکر و ایزوتوپ نشان می‌دهد که تغذیه مخزن مزدوران توسط سازند کشف رود بوده و منشا هیدروکربنها در مخزن شوریجه در نتیجه زایش مواد آلی از سازند چمن بید می‌باشد.

مطالعات ایزوتوپی و بیومارکری نشان می‌دهد که بخش مهم سولفید هیدروژن در مخزن مزدوران بر اثر احیای ترموشیمیایی سولفات (واکنش بین متان وانیدریت موجود در سازند کربناته مزدوران) بوجود آمده است. این سولفید هیدروژن با عث ترش شدگی در مخزن مزدوران شده است. مخزن شوریجه دارای لیتولوژی ماسه سنگی به همراه ترکیبات آهن دار فراوان و دارای درصد کمتری انیدریت در میان لایه های خود نسبت به سازند مزدوران است.پس سولفید هیدروژن کمتری تولید شده و آن نیز با آهن موجود در مخزن واکنش داده و بصورت پیریت رسوب کرده است. یعنی سنگ مخزن مانند یک فیلتر سبب حذف سولفید هیدروژن از مخزن گردیده است.

 

 

 

 


دانلود با لینک مستقیم


پایان نامه ارزیابی ژئوشیمیایی مخازن گازی حوضه رسوبی کپه داغ

پایان نامه ارزیابی ژئوشیمیایی مخازن گازی حوضه رسوبی کپه داغ

اختصاصی از فی توو پایان نامه ارزیابی ژئوشیمیایی مخازن گازی حوضه رسوبی کپه داغ دانلود با لینک مستقیم و پر سرعت .

پایان نامه ارزیابی ژئوشیمیایی مخازن گازی حوضه رسوبی کپه داغ


پایان نامه ارزیابی ژئوشیمیایی مخازن گازی حوضه  رسوبی کپه داغ

 

 

 

 

 

 

تعداد صفحات : 317

فرمت فایل: word(قابل ویرایش) 

  فهرست مطالب:

عنوان                                  صفحه

فصل اول: مقدمه ........................... 1

فصل دوم: زمین شناسی منطقه کپه داغ ........ 2

2-1-مقدمه ................................ 2

2-2-محل و موقعیت ......................... 2

2-3- ریخت شناسی منطقه .................... 3

2-4- چینه شناسی منطقه .................... 4

2-4-1- پرکامبرین ......................... 4

2-4-1-1- شیستهای گرگان ................... 4

2-4-2- کامبرین- اردویسین ................. 5

2-4-2-1- سازندلالون ....................... 5

2-4-2-2- سازند میلا ....................... 5

2-4-2-3- سازند قلی ....................... 5

2-4-3- سیلورین ........................... 5

2-4-3-1- سازند نیور ...................... 5

2-4-4- دونین ............................. 5

2-4-4-1- سازند پادها ..................... 5

2-4-4-2- سازند خوش ییلاق .................. 6

2-4-5- کربنیفر ........................... 6

2-4-5-1- سازند مبارک ..................... 6

2-4-6- پرمین ............................. 6

2-4-6-1- سازند دورود ..................... 6

2-4-6-2 سازند روته ....................... 6

2-4-6-3- سازند نسن ....................... 6

2-4-7- تریاس ............................. 6

2-4-7-1- سازند الیکا ..................... 6

2-4-7-2- سازند قره قیطان ................. 7

2-4-7-3- گروه آق دربند ................... 7

2-4-7-3-1- سازند سفید کوه ................ 7

2-4-7-3-2- سازند نظر کرده ................ 7

2-4-7-3-3- سازند سینا .................... 7

2-4-7-3-4- سازند شیلی میانکوهی ........... 7

2-4-8- ژوارسیک ........................... 8

2-4-8-1- سازند شمشک ...................... 8

2-4-8-2- سازند کشف رود ................... 9

2-4-8-3- سازند بادامو .................... 12

2-4-8-4- سازند باش کلاته .................. 12

2-4-8-5- سازند خانه زو ................... 12

2-4-8-6- سازند چمن بید ................... 12

2-4-8-7- سازند مزدوران ................... 14

2-4-8-7-1- محل برش الگو................... 14

2-4-8-7-2- گسترش منطقه ای ................ 17

2-4-9- کرتاسه ............................ 17

2-4-9-1- سازند شوریجه .................... 17

2-4-9-1-1 محل برش الگو ................... 17

2-4-9-1-2- گسترش منطقه ای ................ 22

2-4-9-2 سازند زرد ........................ 23

2-4-9-3- سازند تیرگان .................... 23

2-4-9-4- سازند سرچشمه .................... 23

2-4-9-5- سازند سنگانه .................... 23

2-4-9-6- سازند آیتامیر ................... 24

2-4-9-7 سازند آب دراز .................... 24

2-4-9-8- سازند آب تلخ .................... 24

2-4-9-9- سازند نیزار ..................... 24

2-4-9-10- سازند کلات ...................... 25

2-4-10- ترشیر ............................ 25

2-4-10-1- سازند پسته لیق ................. 25

2-4-10-2- سازند چهل کمان ................. 26

2-4-10-3 سازند خانگیران .................. 26

2-4-11- نهشته های نئوژن .................. 26

2-4-12- پلیوسن ........................... 26

2-4-12-1- کنگلومرای پلیوسن .............. 26

2-4-12-2- سازند آقچه گیل ................. 26

2-5- زمین شناسی ساختمانی منطقه ........... 27

2-6-پتانسیل هیدروکربنی منطقه ............. 28

2-6-1- معرفی مخازن گازی کپه داغ .......... 28

2-6-1-1- میدان گازی خانگیران ............. 28

2-6-1-2- لایه بندی مخزن مزدوران ........... 29

2-6-1-3- فشار و دمای اولیه مخزن .......... 30

2-6-2-میدان گازی گنبدلی .................. 30

2-6-2-1- لایه بندی مخزن شوریجه ............ 30

2-6-2-2- فشار و دمای اولیه مخزن .......... 30

فصل سوم: روشهای مطالعه ................... 31

3-1- مقدمه ............................... 31

3-2- دستگاه راک اول ...................... 31

3-2-1- ویژگی های پارامترهای راک – اول .... 33

3-2-2- کل کربن آلی(TOC) ................. 34

3-2-3- اندیس اکسیژن (OI)................... 35

3-2-4- اندیس تولید (PI).................... 35

3-2-5-اندیس هیدروکربن زایی((GI............. 35

3-2-6-اندیس مهاجرت(MI) ................... 35

3-2-7-اندیس نوع هیدروکربن (Hydrocarbon Ttype Index) 35

3-2-8- اندیس هیدروژن (HI) ................. 35

3-2-9-نمودار نسبتهای HI/Tmax HI/OI وS1/TOC و S2/TOC   36

3-2-10-تفسیر داده های راک اول ............ 38

3-3- گاز کروماتو گرافی / طیف سنج جرمی .... 38

3-3-1-گاز کروماتوگرافی درGCMS .......... 39

3-3-1-1-آنالیز گرافهای گاز کروماتوگرافی .. 41

3-3-2-طیف سنج جرمی در GCMS............... 42

3-4-بایومارکرها ( نشانه های زیستی) ....... 44

3-4-1- مقدمه ............................. 44

3-4-1-1- بیومارکرها یا نشانه های زیستی ... 45

3-4-1-2- انواع بیومارکرها ................ 47

3-4-2-پارامتر های بیومارکری برای تطابق، منشا و محیط رسوبی ............................................. 49

3-4-2-1ترپانها (Terpanes) .................. 54

3-4-2-2-اندیس هموهوپان ................... 57

3-4-2-3-نسبت پریستان به فیتان ............ 59

3-4-2-4-نسبت (Isopenoid/n-Paraffin) ........... 60

3-4-2-5-ایزوپرونوئید های غیر حلقوی>C20.... 61

3-4-2-6-باتریوکوکان ...................... 61

3-4-2-7-اندیس اولیانان(Oleanane)........... 61

3-4-2-8-بیس نورهوپانها و تریس نور هوپانها 62

3-4-2-9-اندیس گاماسران ................... 62

3-4-2-10- نسبت(C30/C29Ts) .................. 63

3-4-2-11- -β کاروتن و کاروتنویید......... 63

3-4-2-12- Bicyclic Sequiterpanes..................................... 63

3-4-2-13-کادینانها........................ 63

3-4-2-14- دی ترپانهای دو و سه حلقه ای .... 64

3-4-2-15- فیچتلیت(Fichtelite) ............... 65

3-4-2-16- دی ترپانهای چهار حلقه ای(Tetracyclic Diterpane) 65

3-4-2-17-ترپان سه حلقه ای ..................................... 65

3-4-2-18-ترپانهای چهار حلقه ای ........... 66

3-4-2-19-هگزا هیدرو بنزو هوپانها ......... 66

3-4-2-20-لوپانها(Lupanes) ................. 66

3-4-2-21-متیل هوپان(Methyl Hopanes) ........ 66

3-4-3- استیرانها(Steranes) ................. 67

3-4-3-1-نسبت Rgular Steranes/17α(H)-Hopanes .... 67

3-4-3-2- C26استیران....................... 68

3-4-3-3- استیرانهای (C27-C28-C29) ......... 68

3-4-3-4- اندیس C30-استیران ............... 70

3-4-3-5- دیااستیرانهای(C27-C28-C29) ....... 72

3-4-3-6-نسبت Diasteranes/Regular Steranes ...... 72

3-4-3-7-   3-آلکیل استیران................ 73

3-4-3-8-  4-متیل استیران................. 73

3-4-4- استیروئید های آروماتیکی و هوپانوئید ها    74

3-4-4-1- C27-C28-C29- منو آروماتیک استیروئیدها.. 74

3-4-4-2-(Dia/Dia+Regular)C-Ring Monoaromatic Steroids .. 76

3-4-4-3- C­26-C27-C28تری آروماتیک استیروئید. 76

3-4-4-4- بنزوهوپانها (Benzohopanes) ......... 76

3-4-4-5-پریلن( (Perylene .................... 76

3-4-4-6- m/z 239(Fingerprint) و(Fingerprint) m/z 276     77

3-4-4-7- Degraded Aromatic Deterpane.......................... 77

3-4-4-8-خصوصیات ژئوشیمی نفتها برای تطابق با سنگ منشا 77

3-4-5-بلوغ(Maturation) ..................... 79

3-4-5-1- بیومارکرها بعنوان پارامتری برای بلوغ    79

3-4-5-2-ترپانها .......................... 81

3-4-5-2-1-ایزومریزاسیون هموهوپان 22S/(22S+22R)     81

3-4-5-2-2-نسبت  Βα-Moretane/αβ-Hopanes and ββ-Hopane   82

3-4-5-2-3- نسبت Tricyclic/17α(H)-Hopane........ 83

3-4-5-2-4- نسبت Ts/(Ts+Tm)................. 83

3-4-5-2-5- نسبت C29Ts/(C2917α(H)-Hopane+C29Ts). 84

3-4-5-2-6- نسبت Ts/C3017α(H)Hopane......... 84

3-4-5-2-7- اندیس Oleanane یا 18α/(18α+18β)-Oleanane   84

3-4-5-2-8- نسبت (BNH+TNH)/Hopanes ........ 85

3-4-5-3- استیرانها (Steranes) .............. 86

3-4-5-3-1- نسبت 20S/(20S+20R) .............. 86

3-4-5-3-2-نسبت Ββ/(ββ+αα) .................. 86

3-4-5-3-3- اندیس بلوغ بیومارکرها (BMAI) ... 87

3-4-5-3-4- نسبت Diasterane/Regular Sterane ...... 89

3-4-5-3-5- نسبت 20S/(20S+20R) 13β(H),17α(H)-dia steranes89

3-4-5-4-استیروئید های آروماتیکی Aromatic steroids    89

3-4-5-4-1- نسبت TA/(MA+TA) .............. 89

3-4-5-4-2- نسبتMA(I)/MA(I+II) .............. 90

3-4-5-4-3- نسبتTA(I)/TA(I+II) ............... 91

3-4-5-4-4- نسبتC26-Triaromatic 20S/(20S+20R) .. 91

3-4-5-4-5- منوآروماتیک هوپانوئید (Monoaromatic Hopanoids )   92

3-4-5-4-6- پارامتر MAH .................. 92

3-4-6- تخریب میکروبی (Biodegradation) ....... 93

3-4-6-1- پارامتر های بیومارکری تخریب میکروبی     93

3-4-6-1-1- ایزوپرنوئیدها(Isopernoids) ...... 95

3-4-6-1-2- استیران و دیااستیران(Steranes and Diasteranes) 95

3-4-6-1-3- هوپانها(Hopanes) ............... 95

3-4-6-1-4-   25-نورهوپانها (25-Norhopanes). 96

3-4-6-1-5-C28-C34 30-nor-17α(H)-Hopane ......... 96

3-4-6-1-6- ترپانهای سه حلقه ای............ 97

3-4-6-1-7- دیگر ترپانها................... 97

3-4-6-2- اثرات تخریب میکروبی در تعیین بلوغ و تطابق   97

3-4-7-تعیین سن بوسیله بایومارکرها ........ 97

3-5- ایزوتوپهای پایدار ................... 99

3-5-1- مقدمه ............................. 99

3-5-2- ایزوتوپهای پایدار ................. 99

3-5-2-1- اکسیژن .......................... 100

3-5-2-2- کربن ............................ 102

3-5-2-2-1- ارتباط بین سن زمین شناسی و

نسبت ایزوتوپ کربن نفت و کروژن ............ 106

3-5-2-2-2-کاربرد ایزوتوپ کربن در تعیین

نوع محیط رسوبی، نوع کروژن، نوع نفت و مسیر مهاجرت     108

3-5-2-2-2-1- نمودار سوفر(Sofer) ........... 108

3-5-3- گوگرد ............................. 109

3-5-4– کاربرد ایزوتوپهای پایدار در مخازن گاز و کاندنسیت   111

فصل چهارم: نحوه نمونه برداری ............. 114

4-1-مقدمه ................................ 114

4-2-نمونه گیری از میادین گازی ............ 114

4-2-1- روش نمونه گیری گاز و سیالات مخزن ... 115

4-2-2- آنالیز نمونه های مخازن خانگیران وگنبدلی   117

4-3-داده های شرکت نفت .................... 117

4-3-1-مقاطع و نمونه ها ................... 119

فصل پنجم: بحث و تفسیر .................... 120

5-1- مقدمه ............................... 120

5-2- تعبیر و تفسیر داده های راک اول ...... 120

5-2-1-چاه امیرآباد-1 ..................... 120

5-2-2-چاه خانگیران-30 .................... 125

5-2-2-1-سازند چمن بید .................... 127

5-2-2-2-سازند کشف رود .................... 129

5-3-تعبیر و تفسیر داده های راک اول مقاطع سطحی    132

5-3-1مقطع بغبغو ......................... 132

5-3-2-مقطع خور ........................... 137

5-3-3-مقطع فریزی ......................... 141

5-3-3-1-سازند شمشک ....................... 143

5-3-3-2-سازند باش کلاته ................... 145

5-3-4-مقطع خانه زو .......................147

5-3-4-1-سازند چمن بید .................... 150

5-3-4-2-سازند شمشک ....................... 152

5-3-5-مقطع اردک-آب قد .................... 155

5-3-6-مقطع شورک .......................... 159

5-3-7-نتیجه گیری کلی آنالیز داده های راک-اول     163

5-4-تعبیر و تفسیر داده های گاز کروماتو گرافی     164

5-4-1-مقطع بغبغو سازند کشف رود(G-19) ..... 166

5-4-2-مقطع خور سازند چمن بید(G-11) ....... 167

5-4-3-مقطع اردک آب-قد سازند چمن بید(ABG-15) 167

5-4-4-مقطع شورک- سازند کشف رود(G-10) ..... 168

5-4-5-مقطع بغبغو سازند کشف رود(G-45) ..... 169

5-4-6-نتیجه گیری نهایی آنالیز داده های GC 169

5-5-تعبیر و تفسیر داده های بیومارکر مقاطع سطحی   169

5-5-1-سازند چمن بید ...................... 173

5-5-2- سازند کشف رود ..................... 174

5-5-3- نتیجه گیری نهایی آنالیز بیومارکرهای مقاطع سطحی     182

5-5-4- تعبیر وتفسیر داده های بیو مارکری

و ایزوتوپی میعانات سنگ مخزن مخازن مزدوران و شوریجه   182

5-5-4-1- تشخیص محیط رسوبی سنگ منشاء ...... 182

5-5-4-1-1- نسبت C29/C27 استیران در مقابل نسبت Pr/Ph   183

5-5-4-2- تعیین محدوده سنی سنگ منشاء ...... 184

5-5-4-2-1- نسبت C28/C29 استیران .......... 184

5-5-4-2-2-ایزوتوپ کربن ................... 185

5-5-5- تشخیص لیتولوژی سنگ منشاء .......... 186

5-5-5-1- نسبت DBT/ PHEN در مقابل Pr/Ph .... 186

5-5-5-2-اندیس نورهوپان ................... 187

5-5-5-3- نسبت C22/C21 تری سیکلیک ترپان

در مقابل نسبت C24/C23 تری سیکلیک ترپان ... 188

5-5-5-4- نسبتهای  C24تترا سیکلیک ترپان ... 189

5-5-5-5- ایزوتوپ کربن در مقابل نسبت پریستان به فیتان 190

5-5-5-6- مقایسه نسبتهای بیومارکری ........ 190

5-5-5-7- نتیجه گیری لیتولوژی سنگ منشاء .. 191

5-5-6-تشیخص بلوغ سنگ منشاء ............... 191

5-5-6-1-نمودار C24Tet/C23Tri در مقابل C23Tri/C30Hopane   191

5-5-6-2- نمودار نسبت C30DiaHopan/C30Hopane 192

5-5-6-3- نمودار نسبت Pr/nC17 به Ph/nC18 مخازن     193

5-5-6-4- نتیجه گیری بلوغ سنگ منشاء ....... 194

5-5-7- داده های ایزوتوپی کربن دو مخزن مورد مطالعه    194

5-5-8- تشخیص سنگ منشاء های مخازن مزدوران و شوریجه    194

5-6- تشخیص منشاء تولید سولفید هیدروژن در مخازن گازی کپه داغ ............................................. 196

5-6-1- بررسی ترکیب شیمیایی مخازن ......... 196

5-6-2- فشار و دمای مخازن ................. 198

5-6-3- پتروگرافی سازندهای مخزنی منطقه کپه داغ    198

5-6-4- بررسی آلکانهای نرمال و بیومارکری و آب سازند مخازن 200

5-6-4-1- فراوانی آلکانهای نرمال مخازن .... 200

5-6-4-2- بیومارکر آدامانتان .............. 200

5-6-4-3- مطالعه ترکیبات هیدروکربوری گوگرد دار در مخازن   202

5-6-4-4- مطالعه آب سازندی مخازن .......... 204

5-6-4-5- بررسی بلوغ میعانات گازی مخازن .. 207

5-6-4-6- مقایسه ترکیبات گازی مخازن با هیدروکربورهای سنگ منشاء ............................................. 209

5-6-4-7- ایزوتوپ کربن و گوگرد آلی مخازن .. 209

5-7- نتیجه گیری کلی در مورد منشاء سولفید هیدروژن     212

فصل ششم: نتیجه گیری نهایی ............ 213

پیشنهادات............................. 214

پیوستها............................... 215

منابع و مآخذ ......................... 216

چکیده:

بررسیهای ژئوشیمیایی(راک اول- بیومارکر- ایزوتوپ کربن) برروی سنگ منشا احتمالی کپه داغ شرقی نشان می‌دهد که سازند های کشف رود و چمن بید، با توجه به نوع و بلوغ ماده آلی می‌توانند از سنگهای مادر منطقه محسوب شوند. سازند کشف رود با کروژنی از نوع دلتایی- دریایی در مرحله تولید گاز خشک قرار دارد، در حالیکه سازند چمن بید با کروژنی با منشا دریایی-کربناته در انتهای نفت زایی و در ابتدای تولید گاز تر می‌باشد. آنالیز های بیو مارکر و ایزوتوپ نشان می‌دهد که تغذیه مخزن مزدوران توسط سازند کشف رود بوده و منشا هیدروکربنها در مخزن شوریجه در نتیجه زایش مواد آلی از سازند چمن بید می‌باشد.

مطالعات ایزوتوپی و بیومارکری نشان می‌دهد که بخش مهم سولفید هیدروژن در مخزن مزدوران بر اثر احیای ترموشیمیایی سولفات (واکنش بین متان وانیدریت موجود در سازند کربناته مزدوران) بوجود آمده است. این سولفید هیدروژن با عث ترش شدگی در مخزن مزدوران شده است. مخزن شوریجه دارای لیتولوژی ماسه سنگی به همراه ترکیبات آهن دار فراوان و دارای درصد کمتری انیدریت در میان لایه های خود نسبت به سازند مزدوران است.پس سولفید هیدروژن کمتری تولید شده و آن نیز با آهن موجود در مخزن واکنش داده و بصورت پیریت رسوب کرده است. یعنی سنگ مخزن مانند یک فیلتر سبب حذف سولفید هیدروژن از مخزن گردیده است.

 

 

 

 


دانلود با لینک مستقیم


پایان نامه ارزیابی ژئوشیمیایی مخازن گازی حوضه رسوبی کپه داغ