اختصاصی از
فی توو دانلود مقاله تابع و لگاریتم در ریاضیات دانلود با لینک مستقیم و پر سرعت .
تاریخچه مختصر ریاضیات
اولین مطلب :
تاریخ را معمولا غربیها نوشته اند، و تا آنجا که توانسته اند آن را به نفع خود مصادره کرده اند. بنابراین نمی توان انتظار داشت نوادگان اروپائیانی
که سیاهان آفریقا را در حد یک حیوان پائین آورده و آنها را به بردگی کشانده اند، آنها را انسانهائی با سوابق کهن تاریخی و علمی معرفی نمایند.
البته این کلام مصداق کلی ندارد، و فقط اشاره به جریان حاکم در تاریخنگاری غربیها دارد.
قبل از تاریخ
انسان اولیه نسبت به اعداد بیگانه بود و شمارش اشیاء اطراف خود را به حسب غریزه یعنی همانطور که مثلاً مرغ خانگی تعداد جوجههایش را میداند انجام میداد. اما بزودی مجبور شد وسیلة شمارش دقیقتری بوجود آورد. لذا، به کمک انگشتان دست دستگاه شماری پدید آورد که مبنای آن 60 بود. این دستگاه شمار که بسیار پیچیده میباشد قدیمیترین دستگاه شماری است که آثاری از آن در کهنترین مدارک موجود یعنی نوشتههای سومری مشاهده میشود.
سومریها که تمدنشان مربوط به حدود هزار سال قبل از میلاد مسیح است در جنوب بینالنهرین، یعنی ناحیه بین دو رود دجله و فرات ساکن بودند. آنها در حدود 2500 سال قبل از میلاد با امپراطوری سامی، عکاد متحد شدند و امپراطوری و تمدن آشوری را پدید آوردند.
در نخستین قرون تاریخ چهار ریاضیدان مشهور در این کشور وجود داشت که عبارت بودند از:
آپاستامبا(قرن پنجم)، آریاب هاتا (قرن ششم)، براهماگوپتا (قرن هفتم) و بهاسکارا (قرن نهم) که در کتب ایشان بخصوص قواعد تناسب ساده و ربح مرکب مشاهده میشود. محاسبات در این کتابها جنبه شاعرانه داشت و حتی نام علم حسابرا (لیلاواتی) گذارده بودندکه معنی دلبری و افسونگری دارد. با شروع قرن دهم پیشرفت کشفیات ریاضی در هندوستاننیز متوقف گردید و مشعل فروزان علم بدست اعراب افتاد.
در سال 622م که حضرت محمدصلی الله علیه و آله وسلم از مکه هجرت فرمود در واقع آغاز شگفتی تمدن اسلام بود. اعراب که جنبش شدید خود را از سدة هفتم آغاز کرده بودند پس از رحلت پیغمبر اسلام در 632 به توسعه سرزمینهای خود پرداختند و بزودی تمام ممالک آفریقائی ساحل مدیترانه را متصرف شدند.
و این توسعهطلبی ایشان را در اروپاتا اسپانیاو در آسیاتا هندوستانکشانید و در نتیجه تماس با کشورهای مغلوب که مردم آنها غالباً دارای تمدن عالی بودند ذوق شدیدی به آموختن در ایشان بوجود آمد. لذا با سهولت و چالاکی فرهنگ ممالک دست نشانده را پذیرفتند.
در زمان مامون خلیفه عباسی تمدن اسلام بحد اعتلای خود رسید بطوری که از اواسط قرن هشتم تا اواخر قرن یازدهم زبان عربی علمی بینالمللی گردید.
از ریاضیدانان بزرگ اسلامی یکی خوارزمی میباشد که در سال 820 به هنگام خلافت مأمون در بغدادکتاب مشهورالجبر و المقابله را نگاشت.وی در این کتاب بدون آنکه از حروف و علامات استفاده کند، حل معادلة درجه اول را بدو طریقی که ما امروزه جمع جبری جمل و نقل آنها از یکطرف بطرف دیگر مینامیم، انجام داده است دیگر ابوالوفا (998_ 938) است که جداول مثلثاتی ذیقیمتی پدید آورده و بالاخره محمدبن هیثم(1039_ 965) معروف به الحسن را باید نام بردکه صاحب تألیفات بسیاری در ریاضیات و نجوم است.قرون وسطی از قرن پنجم تا قرن دوازدهم یکی از دردناکترین ادوار تاریخی اروپاست. عامة مردم در منتهای فلاکت و بدبختی بسر میبردند. جنگهای متوالی و قتل و غارت و از طرف دیگر نفوذ کلیسا آنچنان فکر مردم را به خود مشغول داشته بود که هیچ کس فرصت آنرا نمییافت که در فکر علم باشد، آری مدت هفت قرن تمام اروپا محکوم به این بود که بار گران جهل و نادانی را بر دوش کشد. در اواخر قرن دهم ژربر فرانسوی کوشید تا به کمک مطالبی که در چند مدرسه از کلیساهای بزرگ اروپا آموخته بود پیشرفت جدیدی به علوم مقدماتی بدهد. وی دستگاه مخصوص را که برای محاسبه بکار میرفت اصلاح کرد. این دستگاه همان چرتکه بود.برجستهترین نامهائی که در این دوره ملاحظه مینمائیم، در مرحله اول لئوناردیوناکسی (1220_1170) ریاضیدان ایتالیائی است. وی که مدتهادر مشرق زمین اقامت کرده بود، آثار برخی از دانشمندان اسلامی را از آنجا به ارمغان آورد. همچنین برای اولین بار علم جبررا در هندسهمورد استفاده قرار داد. دیگر نیکلاارسم فرانسوی میباشد که باید او را پیشقدم هندسه تحلیلیدانست. وی اولین کسی است که نه تنها مجذور و مکعب و توانهای چهارم و پنجم اعدادرا در نظر گرفت بلکه اعدادرا بقوای کسری از قبیل یک دوم و دو سوم و یک هفتم و غیره نیز رسانید و به عبارت دیگر وانهای کسری اعدادرا بدست آورد.
تاریخچه و پیشینه تابع
«تابع»، به عنوان تعریفی در ریاضیات، توسط گاتفرید لایبنیز در سال 1694، با هدف توصیف یک کمیت در رابطه با یک منحنی به وجود آمد، مانند شیب یک نمودار در یک نقطه خاص. امروزه به توابعی که توسط لایبنیز تعریف شدند، توابع مشتقپذیر میگوییم، اغلب افراد این توابع در هنگام آموختن ریاضی با این گونه توابع برمی خورند. در این گونه توابع افراد میتوانند در مورد حد و مشتق صحبت کنند. چنین توابعی پایه حسابان را میسازند.
واژه تابع بعدها توسط لئونارد اویلر در قرن هجدهم، برای توصیف یک عبارت یا فرمول شامل متغیرهای گوناگون مورد استفاده قرار گرفت، مانند f(x) = sin(x) + x3.
در طی قرن نوزدهم، ریاضیدانان شروع به فرموله کردن تمام شاخههای ریاضی کردند. ویرسترس بیشتر خواهان به وجود آمدن حسابان در علم حساب بود تا در هندسه، یعنی بیشتر طرفدار تعریف اویلر بود.
در ابتدا، ایده تابع ترجیحاً محدود شد. برای ژوزف فوریه مدعی بود که تمام توابع از سری فوریه پیروی میکنند در حالی که امروزه هیچ ریاضیدانی این مطلب را قبول ندارد. با گسترش تعریف توابع، ریاضیدانان توانستند به مطالعه «عجایب» در ریاضی بپردازند از جمله این که یک تابع پیوسته در هیچ مکان گسستنی نیست. این توابع در ابتدا بیان نظریههایی از روی کنجکاوی فرض میشد و آنها از این توابع برای خود یک «غول» ساخته بودند و این امر تا قرن بیستم ادامه داشت.
تا انتهای قرن نوزدهم ریاضیدانان سعی کردند که مباحث ریاضی را با استفاده از نظریه مجموعه فرموله کنند و آنها در هر موضوع ریاضی به دنبال تعریفی بودند که از مجموعه استفاده کند. دیریکله و لوباچوسکی هر یک به طور مستقل و تصادفاً هم زمان تعریف «رسمی» از تابع دادند.
در این تعریف، یک تابع حالت خاصی از یک رابطه است که در آن برای هر مقدار اولیه یک مقدار ثانویه منحصر به فرد وجود دارد.
تعریف تابع در علم رایانه، به عنوان حالت خاصی از یک رابطه، به طور گستردهتر در منطق و علم تئوری رایانه مطالعه میشود.
ریاضی - لگاریتم طبیعی
Hossein - 2007-11-06, 11:11
عنوان موضــوع: لگاریتم طبیعی
________________________________________
نظریه ها و قاعده های ریاضی، با کشف خود «هستی» پیدا می کنند، آن ها تنها وجود دارند و اغلب بدون کاربردند. دیر یا زود، و گاهی بعد از صدها و هزارها سال، این موجودات ریاضی به «صفت» تبدیل می شوند و کاربرد خود را در زندگی و عمل، در سایر دانش ها، در صنعت و هنر پیدا می کنند.«اویلر»
لگاریتم و کاربرد آن در زندگی
شاید ۳۸۰ سال پیش کسی فکر نمی کرد لگاریتمی که در رابطه با نیاز محاسبات عملی کشف شد در آینده کاربردهای وسیعی پیدا کند.
شاید هیچوقت کپلر فکر نمی کرد که جدول هایی را که برای ساده کردن محاسبات طولانی در تعیین مدار مریخ و یا کارهای اخترشناسی دیگرش تنظیم کرد، جرقه ای این چنین را در ریاضیات ایجاد کند.
یا شاید لاپلاسی که گفت: “لگاریتم طول زندگی اخترشناسان را چند برابر کرد” نمی دانست که نه تنها طول زندگی اخترشناسان بلکه دریانوردان، بازرگانان، موسیقیدانان، شیمیدانان، ریاضیدانان، زمین شناسان و حتی همه ی انسان های کره ی زمین را چند برابر کرد.
بدیهی است که تا نیاز به چیزی احساس نشود آن چیز کشف و اختراع نمی گردد، در واقع هرکدام از علومی که با آن روبه رو هستیم هریک به مقتضای نیازی و با توجه به هدف خاصی پیکر بندی شده اند.
لگاریتم نیز با توجه به محاسبه های طولانی و ملال آوری که دانشمندان سده های شانزدهم و هفدهم میلادی با آن سر و کار داشتند، بوجود آمد. این محاسبه ها وقت و نیروی زیادی را از دانشمندان تلف می کرد و همیشه دانشمندان در ذهن داشتند که چطور می شود بدون انجام چنین محاسبات پیچیده و دشواری و آن هم در کمترین زمان ممکن به جواب مطلوب دست یابند. گفته می شود که حتی در قرن هشتم هندی ها با محاسبات مربوط به لگاریتم آشنایی داشتند اما این کلمه و مفهوم مربوط می شود به قرن شانزدهم .جدول هایی نیز در این زمینه بوجود آمد و شاید همین تلاش ها و نیازها بود که سر انجام به کشف لگاریتم انجامید تا آن جا که دو دانشمند به طور همزمان و بدون اینکه از کار یکدیگر آگاه باشند موفق به کسب چنین افتخاری گشتند اولی جان نپر و دیگری بورگی.
اما اصطلاح لگاریتم نشات گرفته از فعالیت های نپر است که از واژه ی یونانی «لوگوس» به معنی نسبت و «ارتیوس» به معنی عدد گرفته شده است. او همچنین بجای لگاریتم از اصطلاح عدد ساختگی نیز استفاده می کرد. نپر چکیده ی کارهای خود را در کتابی با عنوان «شرح جدول های عجیب لگاریتمی» چاپ کرد و به دنیا نمایاند.
عدد e (مبنای لگاریتم طبیعی) نیز در چنین سال هایی چشم به جهان و جهانیان گشود. گفته می شود کاشف عددe آن گونه که برخی می پندارنداویلر نبوده است بلکه خود نپر بحث مربوط به لگاریتم طبیعی و عدد e را در یکی از نوشته هایش پیش کشیده است.
فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد
تعداد صفحات این مقاله 14 صفحه
پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید
دانلود با لینک مستقیم
دانلود مقاله تابع و لگاریتم در ریاضیات