
لینک رایگان است اما اگر مایل به کمک به کودکان سرطانی محک هستید می توانید مبلغ درج شده(1000 تومان) را مستقیما از طریق لینک زیر پرداخت نمایید. اجرکم عندالله
سایت شکلک های جذاب و متحرک
لینک رایگان است اما اگر مایل به کمک به کودکان سرطانی محک هستید می توانید مبلغ درج شده(1000 تومان) را مستقیما از طریق لینک زیر پرداخت نمایید. اجرکم عندالله
در این فایل بروات واگذاری مورد بررسی و پژوهش قرار گرفته است که به همراه چکیده، فهرست مطالب، متن اصلی و منابع تحقیق با فرمت pdf دراختیار شما قرار می گیرد
فرمت فابل: pdf
تعداد صفحات: 130
فرمت فایل: ورد قابل ویرایش
تعداد صفحات: 117
تحقیقات کشاورزی
تزاید روزافزون جمعیت و کمبود مواد غذایی در دنیا موجب توجه دانشمندان به ازدیاد محصولات کشاورزی و همچنین بهبود کیفیت آنها گردیده است. در این راستا مواد رادیواکتیو به کمک بررسیهای کشاورزی شتافت و انقلاب عظیمی در کشاورزی به وجود آورد به طوری که عناصر رادیواکتیو یا نشاندار در اکثر رشتههای کشاورزی از جمله مدیریت آب و خاک و تغذیه گیاهی، اصلاح نباتات و ژنتیک، دامپروری، کنترل آفات، صنایع غذایی و محیط زیست مورد استفاده قرار گرفتهاند.
نیل به سوی کشاورزی پایدار بستگی به تعامل بین مواد غذایی خاک و منابع آبی موجود جهت تولید عملکرد مناسب دارد. در این خصوص با استفاده از ایزوتوپها میتوان میزان مطلوب کاربرد کودهای شیمیایی، بهترین زمان مصرف آنها، مکان و مقدار آنها در خاک، بررسی فعالیت میکروارگانیسمهای خاکزی و همچنین نحوة انتقال عناصر غذایی در خاک و گیاه را بررسی نمود.
استفاده از روش ایجاد موتاسیون به منظور تنوع بخشیدن به محتویات ژنتیکی با هدف ارتقاء صفات کمی و کیفی در گیاهان زراعی مورد توجه خاص قرار گرفته است. از طرف دیگر با توجه به اینکه مصرف مواد شیمیایی به منظور حفظ و نگهداری مواد غذایی نه تنها برای مصرفکنندگان بلکه برای محیط زیست مضر میباشد، استفاده از پرتودهی محصولات کشاورزی به عنوان یک روش بیخطر استریلیزه کردن در اکثر کشورهای جهان متداول شده است. در رابطه با کنترل آفات از طریق پرتودهی و عقیم نمودن حشرات نیز گامهای بسیار مثبتی در نقاط مختلف دنیا برداشته شده است.
مبانی فیزیک هستهای
ایزوتوپها (ویژگیها و کاربرد)
اتمهای یک عنصر را که عدد اتمی یکسان و عدد جرمی متفاوت دارند، ایزوتوپهای آن عنصر مینامند (بارهای مثبت که همان تعداد پروتونها میباشند را عدد اتمی و مجموع تعداد پروتونها و نوترونهای هستة یک اتم را عدد جرمی آن میگویند).
ایزوتوپهای یک عنصر، اتمهایی هستند که تعداد بارهای مثبت موجود در هسته و نیز تعداد الکترونهایشان یکسان ولی تعداد نوترونهای موجود در هستة آنها با هم متفاوت است. اغلب عناصر چند ایزوتوپ دارند و چون ساختار الکترونی ایزوتوپها یکسان است، واکنشهای شیمیایی آنها نیز مشابه میشود (شکل 4-1). برای تشخیص هویت یک ایزوتوپ، عدد اتمی آن به صورت شاخص در پایین و سمت چپ نماد شیمیایی آن، و عدد جرمی یا تعداد کل نوکلئونهای آن به صورت شاخص در بالای نماد شیمیایی آورده میشود. برای مثال سه ایزوتوپ اکسین را میتوان به صورت ، و نشان داد. اما از آنجا که عدد اتمی مترادف با نماد شیمیایی است معمولاً شاخص پایین حذف میگردد. بنابراین به عنوان مثال ایزوتوپ اکسیژن به صورت O16 نمایش داده میشود. باید توجه داشت که فراوانی همة ایزوتوپها با هم برابر نیست به عنوان مثال در مورد اکسیژن، 975/99 درصد اتمهای طبیعی از نوع O16 میباشند. در حالی که انواع O17 و O18 به ترتیب 037/0 درصد و 204/0 درصد از اکسیژن طبیعی را تشکیل میدهند. در بین عناصر شیمیایی، تعداد محدودی از آنها در مطالعات بیولوژیک مورد استفاده قرار میگیرند و هر کدام از آنها حداقل دارای دو ایزوتوپ پایدار هستند.
تابش گاما )
پرتوهای گاما عبارتند از تابشهای الکترومغناطیسی تک انرژی که از هستههای برانگیخته حاصل از تبدیل پرتوزا گسیل میشوند. به عبارت دیگر هرگاه هستهای به هر علت در حالت تهییج قرار گیرد، انرژی تهییج خود را به صورت فوتون گاما ساطع میکند. در اغلب واپاشیهای و ، هستة دختر به حالت تحریک شده قرار میگیرد که این انرژی تحریکی هسته به صورت فوتونهای گاما از هسته تابش میشود تا هسته به تراز انرژی پایینتر یا پایدار برگردد. نمایش عمومی تولید گاما را میتوان به صورت نشان داد. مانند:
اکتیویتة ویژه
یکی از مشخصههای مهم رادیو ایزوتوپها، اکتیویتة ویژة آنها یعنی میزان اکتیویته در هر گرم از عنصر یا ماده است که برحسب واحدهای مختلفی از جمله بکرل بر گرم (Bq/g)، میکروکوری بر گرم ، واپاشی بر میلیگرم در ثانیه (dps/mg) و یا واپاشی بر میلیگرم در دقیقه (dpm/mg) بیان میشود.
نیمه عمر
مدت زمان لازم برای کاهش هر ایزوتوپ پرتوزا به نصف مقدار اولیهاش، معیاری از سرعت تبدیل آن ایزوتوپ پرتوزا به ایزوتوپی دیگر است. این دورة زمانی را نیمه عمر مینامند و برای هر ایزوتوپ خاصیتی تغییرناپذیر میباشد. نیمه عمر ایزوتوپهای پرتوزای مختلف از چند ثانیه تا چند میلیارد سال متغیر است.
بنابراین با توجه به مفهوم نیمه عمر مشخص میشود که پس از گذشت n نیمه عمر از یک ایزوتوپ پرتوزا، کسر باقی مانده آن عبارت است از: که در این فرمول 0A اکتیویتة اولیه و A اکتیویتة برجای مانده پس از n نیمه عمر است.
کاربرد رادیو ایزوتوپها
برای سهولت بیشتر میتوان کاربرد رادیو ایزوتوپها را به چند بخش اصلی تقسیم کرد که عبارتند از:
الف) تحت تابش قرار دادن یک مادة هدف به منظور ایجاد تغییراتی در خواص فیزیکی، شیمیایی یا بیولوژیکی آن که این تغییرات ممکن است خاصیت یا سودمندی مادة هدف را تقویت کنند و یا آن را از بین ببرند.
ب) تزریق مقدار اندک رادیوایزوتوپ به مواد به منظور ردیابی آنها در یک فرایند خاص که به عنوان مثال میتوان به مطالعات مربوط به فرسایش و ردیابی جریان آب به منظور پیدا کردن منابع آب اشاره نمود.
ج) چشمههای ثابت پرتو را به عنوان سنجشگر یا وسیلة اندازهگیری برای بعضی کمیتها مورد استفاده قرار میدهند. مثلاً در اندازهگیری ضخامت، چگالی و بازرسی پرتونگاری میتوان از رادیوایزوتوپها استفاده کرد.
د) چشمههای ثابت پرتو را برای تولید قدرت، گرما یا روشنایی نیز مورد استفاده قرار میدهند.
فهرست مطالب:
پروژه ای که در این مطلب برای دانلود آماده شده است به بررسی کیهانشناسی و تغییر نشانگان متریک پرداخته است.کیهانشناسی در واقع مطالعه ساختار بزرگ مقیاس جهانی است که در فواصل میلیونها میلیون سال نوری گسترده شده است و مطالعه کیهانشناسی در واقع مطالعه دینامیکی و فیزیکی رفتار میلیونها میلیون کهکشانی است که این جهان گسترده را پر کردهاند و بررسی تحول این سیستم عظیم در طول میلیونها میلیون سال میباشد.میبایست به این جهان بزرگ مقیاس به عنوان یک کل و سیستمی فیزیکی نگریست که وظیفه ما شناخت قانونهای حاکم بر دینامیک آن است.
در این پروژه مدلی مطرح شده است که در آن در یک کیهانشناسی رابرستون- واکر با حضور میدان نرده ای حقیقی خود برهم کنشی و متریک های تبهگن (که در آن نشانگان متریک گذاری از اقلیدسی به لورنتسی دارند) برای معادلات میدان اینشتین حل های کاملاً هموار بدست می آید ضمناً تابع موج حاصل از معادلات ویلر- دویت برای هامیلتونی مدل ذکر شده در یک ابر فضای خرد پیکهایی دارند که بر مسیرهای کلاسیکی منطبق می باشند.
نیوتن در کتاب اصول که حاصل و منتج از تمام رصدها، آزمونها و تلاشهای علمی اسلاف پیش از او بود، ریاضیات پیچیده حرکت و نظریه گرانشیاش را مطرح کرد و نشان داد که قانونهای حاکم بر دینامیک اجرام آسمانی، همانهایی است که کنشهای جرمهای کوچک زمینی را توضیح میدهد. از دید او زمان مفهومی مطلق داشت و برای همه ناظرها یکسان. اما قانونهای او، علیرغم میل نیوتن، برای مکان مفهومی نسبی قائل میشدند(قانون اول).مدل کیهانشناسی نیوتن که براساس نظریه گرانشی او سازماندهی شده بود، شاید اولین مدل علمی در این زمینه باشد. جهان در این مدل، دارای توزیعی یکنواخت از ماده، در فضایی نامحدود اقلیدسی، ایستا اما ناپایدار بود.
در فصل اول، کیهانشناسی نسبیتی، متریک رابرستون – واکر، مدلهای استاندارد، موفقیتها و نقایص و برخی طرحها در رفع آنها مطرح شده است. در فصل دوم مدلی پیشنهاد شده که با یک زمینه کیهانشناسی رابرستون – واکر در حضور میدانهای حقیقی نردهای خود برهم کنشی و با متریکهای تبهگن و اعمال شرایط خاصی که با انتخاب چارت ویژهای حاصل میگردد برای معادلات میدان اینشتین جوابهائی کاملاً هموار بدست میآوریم.در فصل سوم کیهانشناسی کوانتمی مورد نقد و بررسی قرار میگیرد.در فصل چهارم با استفاده از نتایج حاصل از فصل سوم، مدل مطرح شده در فصل دوم، در محدوده کوانتمی حل و تحلیل شده است. در این بررسی توابع موجی که از حل معادله ویلر- دویت بدست میآیند بر مسیرهای کلاسیکی منطبقاند.
در ادامه فهرست مطالب پروژه بررسی کیهانشناسی و تغییر نشانگان متریک را مشاهده می فرمایید :
چکیده
مقدمه
فصل ۱- کیهانشناسی
۱-۱- کیهانشناسی پیش نسبیتی
۱-۲- کیهانشناسی نسبیتی
۱-۲-۱- اصل کیهانشناسی
۱-۲-۲- اصل وایل
۱-۳- متریک رابرستون- واکر
۱-۴- مدل فریدمن
۱-۴-۱- مشکل افق
۱-۴-۲- مشکل مسطح بودن
۱-۴-۳- مشکل تک قطبی مغناطیسی
۱-۴-۴- مدل تورمی
فصل ۲- بررسی تغییر نشانگان متریک در نسبیت عام
۲-۱- شرط معمول بر متریک
۲-۲- فرضیات مدل پیشنهادی
۲-۳- ارائه مدل و معادلات دینامیکی
۲-۴- پتانسیل
۲-۵- بحث و تحلیل
فصل ۳- کیهانشناسی کوانتمی
۳-۱- تاریخچه مختصری از گرانش کوانتمی
۳-۲- فرمول بندی ها میلتونی در نسبیت عام
۳-۲-۱- انحنای بیرونی
۳-۲-۲- تابع لپس و بردار جابجائی
۳-۲-۳- معادلات گوس – کودازی
۳-۲-۴- هامیلتونی در نبیست عام
۳-۳- کوانتش
۳-۴- شرایط مرزی
فصل ۴- بررسی گذار نشانگان متریک در کیهانشناسی کوانتومی
۴-۱- مسیرهای کلاسیکی
۴-۲- بسته موج همدوس
۴-۳- بدست آوردن ضریب Cl
ضمیمه۱
ضمیمه۲
منابع
این فایل در قالب ورد و قابل ویرایش در 28 صفحه می باشد.
فهرست مطالب:
مقدمه :
نقش آنتن در یک سیستم مخابراتی
سیستم آنتن هوشمند
کاربرد تکنولوژی آنتن هوشمند
علت هوشمندی این نوع آنتن ها
آنتنهای هوشمند از گذشتههای دور
مراحل رسیدن به آنتنهای هوشمند فعلی را میتوان به صورت زیر بیان کرد:
لزوم استفاده از آنتنهای هوشمند
طبقهبندی آنتن هوشمند
فواید استفاده از آنتنهای هوشمند
افزیش محدوة تحت پوشش:
افزایش عمر باتری:
ارایة سرویسهای جدید:
افزایش امنیت مکالمات:
کاهش انتشار
بزرگی اندازة فیزیکی:
electronvanic:
• آنتن هاى همه جهتى
• آنتن هاى یک جهتى
• علت هوشمندى این نوع آنتن ها
شبکه محلی بی سیم
سیستمهای ماهواره ای
مقدمه :
امروزه کوشش های پیگیرانه ای در جهت استفاده هرچه بیشتر از امواج به جای سیم ها در دنیای کامپیوتر در حال انجام است که برخی از آنها به نتیجه مطلوب رسیده ولی برخی هنوز در مراحل آزمایشی و تحقیقاتی قرار دارند. ارتباطات ماهواره ای از طریق آنتن های عادی دریافت و ارسال (send&receive) یکی از نمونه های برجسته و بسیار کارا در این زمینه است که استفاده موفقیت آمیز از آن اکنون معمول گشته است. با این حال تکنیک های پیشرفته تری نیز در راه هستند که از آن جمله است به کارگیری آنتن های هوشمند در گستره ارتباطات مخابراتی و به خصوص انتقال داده ها. اما آنتن هوشمند چیست و چه کاربردی دارد و گذشته از آن، آیا به راستی «آنتن» می تواند «هوشمند»باشد؟
برای اینکه نسبت به سیستم آنتن هوشمند یک دید اولیه پیدا کنید، چشمانتان را ببندید و سعی کنید در حالی که یکی از دوستانتان در اطراف اتاق حرکت می کند با او صحبت کنید. درمی یابید که می توانید محل وی را (یا چند نفر را) بدون دیدنشان در اتاق تشخیص دهید. مهمترین علت آن عبارت است از آنکه: صدای شخصی را که صحبت می کند از طریق دو گوشتان، که سنسورهای صدای شما محسوب می شوند، می شنوید. صدا در دو زمان مختلف به گوش شما می رسد. مغز شما که یک پردازشگر سیگنال حرفه ای است، محاسبات زیادی را انجام می دهد تا همبستگی اطلاعات را با هم پیدا کرده و محل شخص صحبت کننده را پیدا نماید. مغز شما همچنین توان سیگنال صدای دریافتی از دو گوش را با هم جمع می کند. بنابراین صدا را در جهت مربوطه بلندتر از صداهای دیگر دریافت خواهید کرد. سیستم های آنتن تطبیقی هم همین کار را انجام می دهند، که در آن به جای گوش از آنتن استفاده شده است. ولی فرق این دو در آن است که آنتن ها، دستگاه هایی دوطرفه هستند و می توانند سیگنالی را در همان جهت که سیگنال اول دریافت کرده اند بفرستند. بنابراین با استفاده از «چند» آنتن می توان سیگنال را «چند» بار قوی تر دریافت و ارسال کرد.
نکته بعدی اینکه اگر چند نفر با هم صحبت کنند، مغز شما می تواند تداخل را حذف کرده و در یک زمان خاص روی یک مکالمه خاص تمرکز کند. سیستم های ارائه تطبیقی پیشرفته هم می توانند بین سیگنال مورد نظر و سیگنال های ناخواسته تفاوت قائل شوند.
اکنون به تعریف آنتن هوشمند نزدیک می شویم: یک سیستم آنتن هوشمند از چند المان با قابلیت پردازش سیگنال استفاده می کند تا تشعشع و یا دریافت را در پاسخ به محیطی که سیگنال در آن وجود دارد بهینه نماید.
نقش آنتن در یک سیستم مخابراتی
آنتن در سیستم های مخابراتی بیشتر از تمام بخش های دیگر از معرض دید دور مانده است. آنتن دریچه ای است که انرژی فرکانسی رادیویی را از فرستنده به دنیای خارج و از دنیای خارج به گیرنده کوپل می کند. روشی که طی آن انرژی به فضای اطراف توزیع و از آن دریافت می شود اثری بسیار جدی روی استفاده موثر از طیف، برقراری شبکه های جدید و کیفیت سرویس ایجاد شده از این شبکه ها دارد. به طور کلی دو نوع آنتن داریم: آنتن همه جهتی و آنتن یک جهتی.
سیستم آنتن هوشمند
در حقیقت، آنتن ها هوشمند نیستند بلکه سیستم آنتن ها هوشمند هستند. عموماً هنگامی که این سیستم ها در کنار یک ایستگاه پایه قرار می گیرند، آنتن هوشمند از یک ارائه آنتنی با قابلیت پردازش سیگنال دیجیتال برای ارسال و دریافت سیگنال به صورت حساس و تطبیقی استفاده می کند. به عبارت دیگر، چنین سیستمی می تواند به صورت اتوماتیک جهت الگو تشعشعی را در پاسخ به محیط سیگنال تغییر دهد. این مسئله به طرز شگفت انگیزی مشخصه سیستم بی سیم را بهبود می بخشد.