فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود گزارش کار آزمایشگاه عملیات حرارتی با فرمت word

اختصاصی از فی توو دانلود گزارش کار آزمایشگاه عملیات حرارتی با فرمت word دانلود با لینک مستقیم و پر سرعت .

دانلود گزارش کار آزمایشگاه عملیات حرارتی با فرمت word


دانلود گزارش کار آزمایشگاه عملیات حرارتی با فرمت word

دانلود گزارش کار آز عملیات حرارتی تعیین سختی پذیری فولادهای مختلف و بررسی عوامل مختلف روی این قابلیت توسط آزمایش جمینی با فرمت ورد+ تصاویر متالوگرافی -تعداد صفحات: 13

تئوری آزمایش:

محاسبه قطر ایده‌ آل در سختی پذیری:

با محاسبه قطر ایده‌ آل در سختی پذیری (Determination of Ideal Size in Hardenability)  می‌توان فولاد مناسب را برای کاربرد مشخص انتخاب کرد و بنابراین از مصرف فولاد های گران قیمت اجتناب نمود. قطر ایده‌ آل معیار واقعی سنجش و مقایسه سختی پذیری فولاد‌های مختلف است. به علاوه با داشتن قطر ایده‌آل می‌ توان اثرات محیط‌ های سرد کننده مختلف را روی ضخامت پوسته سخت شده مطالعه کرد. در حقیقت باتوجه به قطر بحرانی و قطر ایده‌آل لازم، از به کار بردن فولاد های پر آلیاژ که سختی پذیری زیاد از حد داشته و بنابراین گران قیمت‌ اند اجتناب می‌ شود. از طرفی در صورت نیاز به ضخامت زیادتر پوسته سخت شده می توان با استفاده از قطر بحرانی به جای استفاده از فولاد کربنی ساده و محیط سرد کننده شدید که احتمال ترک برداشتن و یا اعوعاج قطعه را ایجاد می کند،  فولاد آلیاژی مناسب و محیط سردکننده ملایم تری را انتخاب کرد، به طوری که ضمن حصول ضخامت سخت شده مورد امکان ترک خوردن نیز برطرف شود. قطر ایده‌ آل را می‌ توان با استفاده از ترکیب شیمیایی و یا به کمک آزمایش‌ های استاندارد بر روی نمونه‌ های فولادی و نتایج به دست آمده از آن ها محاسبه کرد....


دانلود با لینک مستقیم


دانلود گزارش کار آزمایشگاه عملیات حرارتی با فرمت word

دانلود مقاله آشنایی با نیروگاه حرارتی و اجزاء مختلف آن

اختصاصی از فی توو دانلود مقاله آشنایی با نیروگاه حرارتی و اجزاء مختلف آن دانلود با لینک مستقیم و پر سرعت .

دانلود مقاله آشنایی با نیروگاه حرارتی و اجزاء مختلف آن


دانلود مقاله آشنایی با نیروگاه حرارتی و اجزاء مختلف آن

بویــلر:

  • بویلر در نیروگاه وظیفه تامین بخار جهت چرخش توربین را به عهده دارد و در اصل مانند یک دیگ بخارمی باشدبا این تفاوت که در داخل بویلر و در امتداد دیواره های آن لوله های متعددی قرار گرفته اند و آب پس از ورود به بویلر در قسمت بالایی آن وارد محفظه ای به نام درام شده و سپس از آنجا واز سمت پائین بویلر وارد لوله های بویلر (Water Wall )می گرددو در آنجادر اثر حرارتی که ناشی از سوختن مشعلهای داخل بویلر که در سه ردیف و در دو طرف دیواره های بویلر قرار دارند می باشد آب به بخار تبدیل شده و مجدداً وارد درام می گردد و در درام آب و بخار از یکدیگر جدا شده وآب مجدداً وارد لوله های بویلر و بخار وارد لوله های دیگری به نام سوپر هیتر می گردد که کار داغتر کردن بخار و رساندن دمای بخار به 540درجه سانتیگراد را به عهده دارند و سپس بخار داغ پس از رسیدن به دمای 540 درجه سانتیگراد وارد توربین می گردد,بویلر نیروگاه شازند به طور کلی از نوع درام دار و تحت فشار می باشد که قادر است هم با سوخت گاز طبیعی و هم با سوخت مازوت کار کندو بخار با دمای 540 درجه سانتیگراد و فشار 167Bar بویلر را ترک می کند.
  • درنیروگاه های برق فسیلی و نیز نیروگاه های هسته ای از مولدهای بخار استفاده می شود در مولد های بخار بسیار پیشرفته بخار فوق گرم فشار بالا (mpa5/16 تا mpa 24) تولید می شود و دراین میان مولد های بخار مورد استفاده در راکتورهای آب تحت فشار که در آنها بخار اشباع فشار پایین mpa7 تولید می گردد موردی استثنایی می باشد در همه این موارد از بخار آب بعنوان سیال کاری چرخه رانکین استفاده می شود امروز در جهان مولدهای بخار بزرگترین منبع تأمین انرژی برای نیروگاه ها بشمار می روند .
  • اجزاء اصلی مولد بخار عبارتند از:
  • 1-  دیگ 
  • 2- اکونومایزر
  • 3- سوپرهیتر 
  • 4- ری هیتر 
  • 5- ژنگستروم 
  • 6-  درام
  • و افزون به اینها مولد بخار دارای دستگاه های کمکی مختلفی مانند مشعلها ، دمنده ها ، دودکش و . . .  می باشد .
  • مولدهای بخار از جهات گوناگون تقسیم بندی می شوند و بعنوان مثال می توان آنها را به انواع صنعتی ، نیروگاهی و از جهت دیگر بعنوان درام دار و بدون درام و . . . تقسیم بندی نمود .
  • در بخش زیر به شرخ تک تک اجزاء مولد های بخار (بویلر) و انواع آنها پرداخته می شود :
  • دیگ بخار
  • دیگ بخار به قسمتی از مولد بخار گفته می شود که در آن مایع اشباع به بخار اشباع تبدیل می شودو از لحاظ فیزیکی به دشواری می توان اکونومایزر را از دیگ بخار جدا نمود .
  • مولد های بخار را می توان به نوع نیروگاهی و صنعتی تقسیم نمود که به توضیح کلی آنها پرداخته می شود .
  • مولدهای بخار نیروگاهی مدرن اساساً دو نوع هستند :
  • 1 -  نوع درام دار لوله آبی زیر بحرانی
  • 2- نوع یکبار گذر فوق بحرانی (Once Through).
  • واحدهای فوق العاده بحرانی معمولاً در فشار mpa24 کار می کنند که بالاتر از فشار بحرانی آب ،mpa 9/22 است . مولد بخار درام دار زیر بحرانی معمولاً در حدود mpa13 الیmpa 18کار می کند و بخار فوق گرم با دمای 540 درجه سانتیگراد تولید می کنند و دارای یک یا دو مرحله بازگرمایش بخار هستند . ظرفیت بخار دهی مولدهای بخار نیروگاهی مدرن بالاست و مقدار آن از 125 تاkg/s 1250 میتواند تغییر کند .
  • از سوی دیگر مولدهای بخار صنعتی آنها هستند که در شرکت های صنعتی و موسسات دیگر کاربرد دارند و انواع مختلفی را شامل می شوند . این مولدها می توانند از نوع لوله آتشی باشند مولدهای بخار صنعتی معمولاً بخار سوپرهیتر تولید نمی کنند بلکه بخار اشباع یا حتی آب گرم تولید می کنند این مولدها در فشارهای از چند کیلوپاسکال تا mpa 5/15 کار می کنند و ظرفیت بخاردهی (با آب گرم ) آنها از کمتر از 1 تا 125 kg/s میباشد . مولدهای بخار با سوخت های فسیلی غالباً با توجه به برخی از اجزاء و ویژگیهایشان به صورت زیر تقسیم بندی می شوند :
  • دیگهای لوله آتشی
  • دیگهای لوله آبی
  • دیگهای گردش طبیعی
  • دیگهای گردش کنترل شده
  • دیگهای جریان یکبار گذر
  • دیگهای زیر بحرانی
  • دیگهای فوق بحرانی
  • دیگهای لوله آتشی
  • دیگهای لوله آتشی از اواخر قرن هجدهم جهت مصارف صنعتی مورد استفاده بوده است و امروزه دیگر از این نوع دیگها در نیروگاه های بزرگ استفاده نمی شود در آنها بخار اشباع با فشار حداکثرmpa 8/1 و ظرفیت
    kg/s 3/6 تولید می شود .
  • دیگ لوله آتشی شکل خاصی از دیگ نوع پوسته ای است .دیگ نوع پوستی عبارت است از ظرف یا پوسته بسته و معمولاًً‌ استوانه ای که محتوی آب است و بخشی از پوسته , مثلاً قسمت پائینی آن ، بطور ساده در معرض گرمای شعله یا گازهای حاصل از احتراق خارجی قرارمی گیرد دیگ لوله آتشی صورت تکامل یافته دیگ پیوسته ای است که درآن بجای بخار ، گازهای گرم از داخل لوله ها عبور میکنند . که به دلیل بهبود انتقال حرارت ، بازده دیگ لوله آتشی خیلی بیشتر از دیگ پوسته ای اولیه است ومقدار آن %70  میرسد . دیگهای لوله آتشی بر دو نوعند : 1- دیگ با جعبه آتشی 
  • 2 - دیگ کشتی اسکاچ .
  • دریک دیگ با جعبه آتشی کوره یا جعبه آتشی همراه با لوله های آتشی درداخل پوسته قرار می گیرد و در دیگ کشتی اسکاج ، احتراق در داخل یک یا چند محفظه احتراق استوانه ای که معمولاً در داخل و نزدیک به ته پوسته اصلی قرار دارد ، انجام می گیرد . گاز ها از قسمت عقب محفظه ها خارج می شوند وپس از تغییر جهت از داخل لوله های آتشی به طرف جلو می آیند و از طریق دودکش خارج می شوند .
  • دیگ لوله آبی : نمونه های اولیه
  • از آنجایی که دیگهای لوله آتشی برای داشتن فشارها و ظرفیت های بالا نیازمند پوسته ای با قطر بزرگ هستند و به دلایل هزینه های مالی و مسائل خاص فیزیکی و شیمیایی از بویلرهای لوله آبی استفاده شد این دیگها به دو نوع لوله مستقیم و لوله خمیده تقسیم شده اند :
  • 1-2-1- دیگ لوله مستقیم
  • در این دیگها لوله های مستقیم با قطر خارجی 3 تا 4 اینچ بین دو مقسم عمودی قرار می گرفتند .
  • یکی از مقسم ها پایین آورنده بود که تقریباً آب اشباع را به لوله ها تغذیه می کرد . مقسم دیگر بالابرنده بود که مخلوط مایع و بخار را دریافت می کرد . چگالی آب در پایین آورنده بیشتر از چگالی مخلوط دو فازه در بالابرنده بود و این اختلاف چگالی موجب گردش طبیعی آب در جهت عقربه ساعت می شد . با افزایش ظرفیت دیگ ، مخلوط دو فاز به استوانه بالایی(درام) که به موازات لوله ها قرار می گرفت ، وارد می شد . درام آب تغذیه را از آخرین هیتر آب تغذیه دریافت می کرد و بخار اشباع را از طریق جدا کننده بخار درام ، به سوپرهیت می فرستد . انتهای  پایینی   پایین آورنده ها (Down Comer) به هدر بلودان وصل میشود که  رسوبات آب گردشی را جمع می کند .
  • 1-2-2- دیگ های لوله خمیده
  • در دیگ لوله خمیده به جای لوله های مستقیم بین درام و هدر پایینی از لوله های خمیده استفاده می شود .
  • دیگ لوله آبی : پیشرفته
  • ظهور کوره با دیوارهای خنک شونده با آب که دیواره های آبی (Water Wall) نامیده می شوند ، بالاخره منجر به ادغام کوره ، اکونومایزر ، دیگ ، سوپر هیتر‌، ری هیتر و ژنگستروم در مولد بخار شد .
  • با پیشرفت های اخیر به دلیل وجود گرمکنهای آب تغدیه ( هیتر ) به تعداد 8 عدد ، اکونومایزر کوچکتر و با افزایش فشار آب تغذیه ، سطح دیگ کوچکتر شده است زیرا گرمای نهان تبخیر با افزایش فشار به شدت کاهش می یابد لذا بویلرهای جدید دارای دیگی با سطح کمتر و سوپرهیتر و ری هیتر با سطوح بیشتر هستند . آب در دمای 230 درجه سانتیگراد تا260 درجه سانتیگراد بعد از آخرین هیتر فشارقوی وارد اکونومایزر شده و آنرا به صورت اشباع خارج می کند و آنگاه آب از قسمت میانی وارد درام می شود . آب از طریق لوله های پایین آورنده (Down Commer ) که در خارج از کوره اند . از درام به هدر های پایینی می رود و آب از هدرهای پایین از طریق Water Wall ها به بالای کوره منتقل می گردد آب در این لوله ها گرما را از گرمای حاصل از احتراق دریافت می کند و به مقدار بیشتری تبخیر می گردد و اختلاف چگالی بین آب لوله های پایین آورنده Water Wallها به گردش آب کمک می کند . در درام بخار از مایع در حال جوش جدا می شود و به سوپر هیتر منتقل شده و در نهایت در خروجی سوپرهیتر وارد توربین HP می گردد . بخار پس از خروج از تورین HP به ری هیتر باز می گردد و سپس به قسمت توربین IP وارد می شود . هوای پس از عبور از دمنده با جریان اجباری(FDF) ، توسط گازخروجی پیش گرم می شود پس از آن هوا وارد کوره می شود و در آنجا با سوخت آمیخته شده می سوزد و دما به حدود 270درجه سانتیگراد میرسد . گازهای حاصل از احتراق بخشی از انرژی خود را به Water Wall و ری هیترها ، سوپرهیترها و اکونومایزر می دهند و آنرا در دمای 300درجه سانتیگراد ترک می کنند و از آن به بعد گازها هوای ورودی را در پیش گرم کن GAH گرم و آنرا در دمایی در حدود 150 درجه سانتیگراد ترک می کنند . یک دمنده با جریان مکشی (GRF) گازها  را بعد از اکونومایزر اکستراکت کرده  و مجددا به درون کوره می فرستد .
  • دلیل اصلی برای اینکه دود خروجی از کوره با دمای حدود 150 درجه سانتیگراد کوره را ترک می کند اینست که اولاً : بایستی دمای دود خروجی بالاتر از نقطه شبنم محصولات احتراق باشد تا از تشکیل اسید و خوردگی اجزای فلزی در مسیر جریان گازها جلوگیری کند و دوم اینکه گازهای حاصل از احتراق باید دارای نیروی بالابر کافی جهت گذشتن از مقدار زیادی دود که در بالای دودکش قراردارد باشند تا بخوبی در جو پراکنده شوند .
  • درام ( استوانه بخار )
  • درام که در کلیه مولد های بخار به استثنای مولدهای یکبار گذر به کار می رود محفظه ای است که درآن آب تغذیه از اکونومایزر به آن وارد می شود ، بخار اشباع از آب جوشان جدا می شود و بخار به سوپر هیتر رفته و بقیه آب مجدداً از طریق لوله های Down Commer به انتهای بویلر منتقل شده و مجدداً جریان می یابد .
  • سوپرهیتر هاو ری هیترها
  • همانگونه که اشاره شد بخار خروجی (اشباع) از درام وارد سوپرهیتر ها می شود و در این بخش دمای آن تا 540درجه سانتیگراد افزایش می یابد که در مورد ری هیترها نیز همانگونه که گفته شد بخار خروجی از توربین HP وارد ری هیتر شده و پس از افزایش دما تا 540 درجه سانتیگراد  وارد توربین IP می گردد .
  • سوپرهیتر ها انواع مختلفی دارند که عبارتند از :
  • سوپر هیتر همرفتی
  • در طرحهای پیشین ، فوق گرمکنها در بالا یا در پشت ردیف لوله های آبی قرار می گرفتند تا از شعله احتراق و دما های بالا محفوظ بمانند و بدین سان طریقه اصلی انتقال گرما بین گازهای احتراق و لوله های سوپرهیتر ، همرفت بود و این نوع سوپرهیتر به سوپرهیتر همرفتی معروف است .
  • برجسته ترین ویژگی این سوپرهیتر ، جواب دهی آن به تغییرات بار است . هنگامی که تقاضا برای بخار افزایش می یابد ، بر جریان سوخت و هوا و از این رو برجریان گازهای احتراق نیز افزوده می شود .
  • ضرایب انتقال حرارت همرفتی نیز هم در داخل و هم درخارج لوله ها افزایش می یابد که این هم موجب افزایش تندتر ضریب کلی انتقال حرارت بین گازها و بخار نسبت به افزایش آهنگ جرمی جریان بخار می شود . از آنجا که دمای احتراق بر حسب بار ثابت است . بنابراین بخار به ازای هر واحد دبی جرمی جریان ، گرمای انتقالی بیشتری را جذب میکند و دمای آن بر حسب بار افزایش می یابد .
  • سوپرهیتر تابشی
  • نیاز به جذب گرمای بیشتر موجب شد تا سوپرهیتر ها با دماهای بالا ساخته شوند و در معرض شعله احتراق قرار گیرند . سرعت بخار افزایش داده شد با ضرایب کلی انتقال حرارت افزایش یابد .
  • انتقال حرارت بین گازهای داغ و شعله از یک طرف و سطوح خارجی لوله ها از طرف دیگر عمدتاً به روش تابش انجام می شود که به این نوع ، سوپرهیتر تابشی اطلاق گردید . انتقال حرارت تابشی با Tw 4 –Tf4  متناسب است که Tf : دمای مطلق شعله و Tw دمای سطح لوله است . Tf تحت تأثیر بار نیست لذا انتقال حرارت برای جریان واحد بخار ، با افزایش جریان  بخار ، کم می شود . لذا افزایش بار باعث کاهش دمای بخار می گردد .
  • بویلرهای یکبار گذر (Once Through)
  • این نوع بویلرهارا بویلرهای گردشی اجباری ، بنسون و با فشار فراگیر نیر می نامند و عنوان فراگیر به این علت به کار رفته است که این نوع دیگها در همه دما ها و فشار ها می توانند کارکنند .این نوع بویلرها برای ظرفیت های بزرگ و فشارهای فوق بحرانی مناسب است . آب تغذیه در این نوع بویلر در یک مسیر پیوسته از اکونومایزر ، Water Wall ها و لوله های سوپرهیتر می گذرد و به ترتیب به صورت مایع اشباع و بخار سوپرهیت در می‌آید . در این بویلرها برای جداسازی بخار از آب جوشان به درام نیاز نیست و گردش آب نیز صورت نمی گیرد . این نوع بویلر تنها دیگی است که برای کار درفشار های فوق بحرانی (برای آب بالاتر از Mpa 1/22)مناسب است، زیرا گرمای نهان تبخیر در فشار بحرانی و بالاتر از آن صفر است و بخار وآب مایع نیز یکسان هستند و جداسازی آنها نه ممکن است و نه لازم . این دیگها در فشارهای فوق بحرانی بیشتر به کار برده می شوند ولی با این همه استفاده از آنها در فشارهای زیاد زیر بحرانی نیز می تواند  مقرون به صرفه باشد .
  • این بویلرها در محدوده فشار mpa8/13 تا mpa6/27 و بخار دهی kg/s8/3 تا 1260 اقتصادی هستند .
  • اکونومایزر (صرفه جو)

اکونومایزر یک مبدل حرارتی است که دمای آب تغذیه بویلر را پس از خروج از هیترهای فشار قوی تا دمای اشباع مربوط به فشار بویلر افزایش می دهد . این کار توسط دودهایی که آخرین سوپر هیتر باری هیتر را ترک می کند انجام می گیرد . دود در دماهای بالا گرما را به سوپر هیتر وری هیترها می دهد و با دمایی حدود 370 تا 540درجه سانتیگراد به اکونومایزر وارد میگردد در ابتدا آب تغذیه پیش از گرمایش اولیه وارد اکونومایزر می شد و چون دمای آب ورودی به اکونومایزر پایین بود، در نتیجه دمای سطح خارجی لوله ها نیز کمتر از دمای نقطه شبنم گاز ها می شد که این امر به علت وجود so2  و so3 در گازها موجب چگالش و خوردگی

شامل 180 صفحه فایل word قابل ویرایش


دانلود با لینک مستقیم


دانلود مقاله آشنایی با نیروگاه حرارتی و اجزاء مختلف آن

دانلود پروژه مبدل های حرارتی - مکانیک

اختصاصی از فی توو دانلود پروژه مبدل های حرارتی - مکانیک دانلود با لینک مستقیم و پر سرعت .

دانلود پروژه مبدل های حرارتی - مکانیک


دانلود پروژه مبدل های حرارتی - مکانیک

لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه:132
فهرست و توضیحات:

مقدمه

فصل اول

فصل دوم

اهداف و نیازمندیهای کلی

لولهها

پوسته ها و پوشش های آنها

بافل ها و صفحات نگهدارنده آنها

واشرها

صفحات نگهدارنده لوله ها

قسمت های انعطاف پذیر پوسته

کانال ها، روکش ها و درپوش ها

نازل.ها

فلنج ها و پیچ های انتهایی

نتایج

پیشنهادات

مراجع

 

مقدمه

مبدل حرارتی یکی از اجزای مهم سیستم های تبدیل انرژی، صنایع شیمیایی، نفت، فولاد، چوب و کاغذ، غذایی و غیره می باشد. لزوم صرفه جویی در مصرف انرژی و جلوگیری از اتلاف انرژی و توجه به مسائل آلودگی محیط زیست اهمیت نقش مبدل حرارتی و طراحی بهینه آن را روشن تر میسازد. با رونق کامپوترهای شخصی در بازار و ظهور سوپر کامپوترها در مراکز تحقیقاتی و علمی، فرایند طراحی مبدل های حرارتی نیز تحولاتی را طی کرده است.

در این مقدمه معیارهای طراحی مبدل های حرارتی برای طراحی کامل مبدل های حرارتی در جهت رشد و توسعه این طراحی ها بیان خواهد شد.

هر گونه بحث در مورد فرآیند طراحی مبدل های حرارتی بایستی مبتنی بر شناسایی و درک معیارهایی باشد که عملکرد مبدل با توجه به آن معیارها سنجیده می شود. بیان این معیارها کار ساده‌ای است ولی مشکل وقتی بروز می کند که طراح یا مشتری بخواهد آنها را در موارد خاص اعمال کند. موارد زیر در مورد معیارهای طراحی مبدل ها به ترتیب تقریبی اهمیت آورده شده است.

اولاً مبدل های حرارتی را از لحاظ نوع کاربرد به دو دسته کلی می توان تقسیم نمود. فلسفه و روش طراحی و ساخت هر یک از این مبدل ها متفاوت است. بی شک بسیاری از مبدل های حرارتی به صورت انبوه تولید می شوند. این قبیل مبدل ها مانند رادیاتور اتومبیل، اواپراتور یخچال، دستگاههای تهویه مطبوع، خنک کن روغن، دیگ آب گرم و غیره در مقیاس خیلی وسیع ساخته می شوند. بهترین روش طراحی این دسته از مبدل ها آن است که نمونه های مختلفی از آنها ساخته شود و تحت شرایط عملکرد مختلف مورد آزمایش قرار گیرند تا طرح بهینه از نظر فنی و اقتصادی معلوم گردد. هزینه های مربوط به این نمونه سازی و آزمایشات به دلیل منافع اقتصادی ناشی از تولید انبوه جبران خواهد شد.

در مقابل، مبدل های حرارتی دیگری در صنایع شیمیایی و پتروشیمی و نفت و فولاد و غیره پیدا می شوند که از هر نوع فقط یک عدد(و یا تعداد معدودی به صورت سری یا موازی) مورد نیاز هستند، که هیچ راهی برای آزمایش آنها نیست مگر آنکه در کارخانه نصب شده و مورد بهره برداری قرار گیرند. اغلب این مبدل های حرارتی در شرایطی به کار خواهند رفت که دبی سیالات، ترکیب شیمیایی و خواص فیزیکی و مشخصات رسوب زائی آنها دقیقاً معلوم نیستند و روز به روز تغیر میکنند. مسلماً این موارد مستلزم دقت بیشتر در فرایند طراحی و اطمینان بیشتر از موفقیت طرح خواهد بود.

اولین معیار آن است که مبدل حرارتی نیازهای فرآیند مورد نظر را تأمین کند. یکی از این نیازها عبارت است از انتقال حرارت کافی بین دو سیال در چهارچوب افت فشار مجاز هر سیال. مبدل حرارتی باید با توجه به تشکیل رسوب روی سطوح آن، تا زمان تعمیر برنامه ریزی شده این توانایی را داشته باشد. لازم به ذکر است که در اولین مرحله از طراحی با کمبودهای زیادی مواجه هستیم. مثلاً خواص ترموفیزیکی سیالات به ندرت دقیقاً معلوم هستند، روابطی که برای طراحی به کار میروند معمولاً تجربی بوده و از جامعیت کافی برخوردار نیستند، محدودیت های فضا باعث محدودیت هایی در ابعاد مبدل می شوند، شرایط واقعی عملکرد سیالات روز به روز تغیر می کنند و بالاخره اثر رسوب سیالات فقط به طور حدسی وارد محاسبات شده و در حقیقت با زمان تغییر میکند. در این مرحله از طراحی اطلاعات کافی از سایر اجزا در دست نیست تا بتوان یک تجزیه و تحلیل کمی به عمل آورد. در نتیجه طراح باید با انتخاب ضرائب اطمینان مناسب و در نظر گرفتن انعطاف پذیری لازم در عملکرد مبدل حرارتی احتمال موفقیت طرح را افزایش دهد.

معیار دوم آن است که مبدل حرارتی در مقابل عوامل نامطلوبی که از محیط بر آن تحمیل می شود مقاومت کند. مهمترین عوامل تنش های مکانیکی است، نه تنها در شرائط کارکرد عادی بلکه تنشهای باشی از حمل و نقل، نصب، راه اندازی، خاموشی و موارد خاصی از قبیل اتفاقات ناگوار غیر قابل پیش بینی مانند زلزله و غیره. تنش های مکانیکی دیگری نیز ناشی از لوله کشی ها و تغییرات درجه حرارت حالت دائم و گذرای سیالات نیز بایستی در نظر گرفته شوند. مبدل باید در مقابل خوردگی سیالات و محیط مقاوم باشد. این موضوع گرچه به انتخاب صحیح مواد مربوط می شود ولی روی طراحی مکانیکی نیز بی تأثیر نیست. مبدل بایستی حتی الامکان در مقابل تشکیل رسوب نیز مقاوم باشد.

نقش طراح در این رابطه حداکثر نگاه داشتن سرعت های سیالات است، البته تا جایی که افت فشار مجاز، ارتعاشات و مسائل سائیدگی[1] اجازه می دهد. همچنین ملحوظ داشتن این نکته که سطوح مبدل برای تمیز کردن رسوب ها قابل دسترسی باشند.

معیار سوم مربوط به تعمیر و نگهداری مبدل حرارتی است، یعنی ساختمان مبدل طوری انتخاب شود که تعمیر کردن آن و تعویض قطعاتی مانند لوله، واشر و غیره که در معرض خوردگی، سائیدگی، ارتعاشات و سالخوردگی قرار دارند امکان پذیر باشد. این نیاز ممکن است بر وضعیت قرار گرفتن مبدل در محل کار(افقی یا عمودی) و تأمین فضای لازم برای کار تعمیراتی در اطراف مبدل و جهت های لوله کشی یا کانال کشی تأثیر داشته باشد.

معیار چهارم که مستقیماً روی معیارهای دوم و سوم اثر می گذارد آن است که طراح بایستی مزایای انتخاب چند مبدل کوچکتر سری یا موازی را نسبت به یک مبدل حرارتی بزرگ در نظر داشته باشد. انتخاب چند مبدل با لوله کشی ها و شیرها و اتصالات مناسب باعث می شود که در صورت بروز عیب در یک مبدل حرارتی به سهولت بتوان آن مبدل را برای تعمیرات لازم از شبکه مبدل ها خارج نمود بدون آنکه اثرات نامطلوب شدیدی روی کل سیستم کارخانه به جای گذارد.

این موضوع در خنک کن ها و کندانسورها دارای اهمیت ویژه ای است. زیرا در فصل زمستان که ظرفیت سرمایش شبکه مبدل ها به دلیل سردی هوا افزایش می یابد می توان تعدادی از مبدل های حرارتی را از مدار خارج نمود تا از سرمایش بیش از حد سیال گرم یا تقطیر شونده جلوگیری گردد. معیار پنجم آن است که هزینه مبدل های حرارتی حداقل باشد. بدیهی است که کاهش هزینه مبدل حرارتی نباید منجربه یک مبدل زیر اندازه غیر قابل اعتماد گردد زیرا ضربه و زیان ناشی از عملکرد بد مبدل حرارتی به مراتب بیشتر از صرفه جویی در هزینه اولیه است. در یک طراحی بهینه اقتصادی بایستی مبدل حرارتی در رابطه با کل سیستمی که مبدل جزئی از آن است در نظر گرفته شود. زیرا یک مبدل حرارتی ممکن است به تنهایی بهینه باشد ولی وقتی که در کل سیستم قرار گیرد منجربه سیستم بهینه نگردد. بالاخره ممکن است محدودیت های جا و مکان، یا حمل و نقل و نگهداری محدودیت هایی روی قطر، طول، وزن یا حجم مبدل حرارتی اعمال کند که همواره بایستی مد نظر باشد.

یک مبدل حرارتی را نباید با این بینش طراحی نمود که اگر برای منظور طراحی شده خوب کار نکرد به منظور دیگری مورد استفاده قرار گیرد. اغلب مبدل های حرارتی برای پروژه هایی در نظر گرفته می شوند که عمر آن پروژه ها بیشتر یا مساوی خود مبدل است. این بینش که مبدل حرارتی مورد نظر زودتر از عمر پروژه مربوطه برای کار دیگری مورد استفاده قرار گیرد تلویحاً به این معناست که بقیه اجزا پروژه متناسب با مبدل طراحی نشده اند. بهتر است تمام اجزای یک سیستم از نظر عمر کارکرد مناسب طراحی ساخته شوند.

این پروژه شامل سه فصل است که در فصل اول دسته بندی مبدل های حرارتی بیان گردیده است. مبدل های حرارتی از نظر ساختمان، تعداد و نوع سیالات، آرایش جریان، حدود درجه حرارت کارکرد و غیره تقسیم بندی شده اند. آشنایی با این دسته بندی ها طراح را در انتخاب مبدل مناسب کمک خواهد کرد. فصل دوم در ارتباط با استاندارد TEMAدر مورد بافل ها و صفحات

نگهدارنده لوله  ها[2] می باشد که کلاس R، C و B مبدل های حرارتی را از دیدگاه استاندارد مکانیکیTEMA مورد نقد و برسی قرار می دهد و در فصل سوم نتایج و پیشنهادات ارائه شده اند که برداشتی از مهمترین موارد ذکر شده در فصل اول و دوم می باشد. در پایان نیز منابع و مراجع ذکر شده اند.

انواع مبدل های حرارتی

همانطور که می دانیم در دنیا استانداردهای مختلفی درباره قطعات و تجهیزات مکانیکی وجود دارد ولی در این پروژه از استاندارد TEMA ( Tubular  Exchanger Manufacturers Association  ) که پرکاربردترین استاندارد در زمینه مبدل های حرارتی است استفاده شده است.

روش نامگذاری مبدلهای حرارتی مطابق با استاندارد TEMA:

در استاندارد TEMA هدقسمت جلویی، پوسته و هد قسمت انتهایی مبدلهای حرارتی مختلف در جدولی که در ذیل آورده شده است گردآوری شده و هر کدام از این قسمتها با یکی از حروف انگلیسی نامگذاری شده اند، حال با توجه به شرایط کاری مورد نیاز و خصوصیات این سه ناحیه از مبدلهای حرارتی ، هر قسمت انتخاب شده و در کنار یکدیگر قرار می گیرند ، به این ترتیب نام مبدل حرارتی مورد نظر با کنار هم قرار دادن حروف مربوط به هر قسمت بوجود می آید.

هد قسمت جلویی مبدل را stationary head گویند که سیال ورودی به لوله وارد این هد      می شود. برای اتصال هدها به مبدل یا از اتصالات پیچ و فلنج استفاده می شود( شکل2) و یا آنها را به بدنه جوش می دهند

در این قسمت انواع مختلف ( هد قسمت جلویی ، پوسته و هد قسمت انتهایی ) و خصوصیات آنها را از نظر استاندارد TEMA بررسی می کنیم.

STATIONARY HEAD:

اتصالات پیچی هزینه را افزایش می دهند ولی در عوض در هنگام تعمیر خارج کردن قطعات را ممکن می سازند. اتصالات جوشی ارزانتر بوده و برای کار در فشارهای بالا استفاده می شوند ولی با استفاده از این نوع اتصال خارج کردن قطعات داخلی ممکن نمی باشد.

 Stationary headها به انواع زیر تقسیم بندی می شوند :

نوع A : در این هد تمام اتصالات بصورت فلنجی می باشد و امکان باز کردن و دسترسی به لوله ها راحت تر است . وقتی سیال ورودی به واحد رسوب را باشد از این نوع هد استفاده می شود. در این نوع هد، cover بر روی هد، هد بر روی Tube sheet و Tube sheet به پوسته[3] پیچ شده است.

نوع B : این نوع هد فاقد cover است و در آن ، هد به Tube sheet و Tube sheet به پوسته پیچ شده است.

این نوع هد در مواردی که سیال تمیز است کاربرد دارد.

نوع C : در این نوع ، Cover به هد پیچ شده و Tube sheet به هد جوش خورده و به پوسته پیچ شده است. اگر سیال ورودی به سیستم رسوب زا نباشد و یا وقتی که فشار سیستم زیاد باشد از این نوع

هد استفاده می کنیم. در این نوع هد، دسته لوله را می توان خارج کرد.

نوع N : در این نوع هد cover به هد پیچ شده ولی Tube sheet به هد و هد به پوسته جوش خورده اند.

کاربرد این نوع هد مانند نوع C می باشد. در این نوع هد دسته لوله را نمی توان خارج کرد.

نوع D : در این هد تمام اتصالات جوشی می باشد و برای کار در فشارهای با لا طراحی شده است.

SHELL:

به بدنه مبدل که بین دو هد آن قرار گرفته پوسته[4] می گویند. تیوبهای مبدل درون پوسته قرار گرفته اند. روی پوسته تعدادی نازل وجود دارد که مسیر ورود و خروج سیال سمت پوسته هستند. تعداد و نحوه قرار گیری نازلها روی پوسته یکی از پارامترهایی است که می توان استفاده از آن نوع پوسته را بر اساس استاندارد TEMA مشخص کرد. ( شکلهای زیر).

این فقط قسمتی از متن پروژه است . جهت دریافت کل متن پروژه ، لطفا آن را خریداری نمایید


دانلود با لینک مستقیم


دانلود پروژه مبدل های حرارتی - مکانیک

تحقیق در مورد بررسی کلی نیروگاه های حرارتی و نیروگاه های اتمی

اختصاصی از فی توو تحقیق در مورد بررسی کلی نیروگاه های حرارتی و نیروگاه های اتمی دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد بررسی کلی نیروگاه های حرارتی و نیروگاه های اتمی


تحقیق در مورد بررسی کلی نیروگاه های حرارتی و نیروگاه های اتمی

لینک پرداخت و دانلود *پایین مطلب*

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 تعداد صفحه14

 

نیروگاه حرارتی

مقدمه

نیروگاه حرارتی جهت تولید انرژی الکتریکی بکار می‌رود که در عمل پره‌های توربین بخار توسط فشار زیاد بخار آب ، به حرکت در آمده و ژنراتور را که با توربین کوپل شده است، به چرخش در می‌آورد. در نتیجه ژنراتور انرژی الکتریکی تولید می‌کند. نیروگاه حرارتی به مقدار زیادی آب نیاز دارد. در نتیجه در محلهایی که آب به فراوانی یافت می‌شود، ترجیحا از این نوع نیروگاه استفاده می‌شود. چون انرژی الکتریکی را به روشهای دیگری ، مثل انرژی آب در پشت سدها (توربین آبی) ، انرژی باد (توربین بادی) ، انرژی سوخت (توربین گازی) و انرژی اتمی هم می‌توان تهیه کرد. سوخت نیروگاه حرارتی شامل ، فروت و یا گازوئیل طبیعی است.

 

 

 

ا

نیروگاه های اتمی شناور از ایمنی بیشتری برخوردار خواهند بود

"تاتیانا سینیتسینا" کارشناس خبرگزاری «نووستی» /

"سرگی کرینکو" رئیس آژانس فدرال انرژی اتمی، "روس اتم"، در مراسم آغاز ساخت اولین نیروگاه اتمی شناور در جهان اعلام نمود که این نیروگاه بسیار ایمن تر از نیروگاه های برق اتمی زمینی می باشد، چرا که از چندین سطح محفاظتی برخوردار است. این نیروگاه در کمپانی کشتی سازی "سیو ماش" ساخته خواهد که زیر مجموعه مرکز دولتی روسیه در ساخت ناوهای اتمی است و در شهر سیورادوینسک (Severodvinsk) در استان آرخانگلسک واقع شده است.

کرینکو در تایید سخنان خود، از حادثه غرق شدن زیردریایی اتمی "کورسک" نام برد که در سال 2000 میلادی در دریای بارنتس رخ داده بود. در آن زمان در اثر انفجاری مهیب، جریان الکتریکی در کشتی قطع شده و پر از آب شد. اما رآکتور اتمی مقاوم بود که بطور خودکار خاموش شده و فرمان سیستم ایمنی را کاملاً اجرا کرد. و پس از آنکه کشتی را بیرون آوردند، متخصصین دیدند که رآکتور اتمی بطور کامل سالم و آماده کار است.

حقیقتاً بعید است که آزمونی دشوارتر و متقاعد کننده تر از عملکرد در شرایط اضطراری وجود داشته باشد. از همین دستگاه های انرژی که شرایط دشوار نظامی و کار بعنوان یخ شکن قطبی را پشت سر گذاشته اند، پیشنهاد می شود که در نیروگاه های اتمی شناور استفاده شوند.

اولین نیروگاه برق اتمی شناور به افتخار دانشمند بزرگ روس "میخائیل لامانوسوف" (1711-1765) نام "آکادمیسین لامانوسوف" را گرفت و ساخت آن تا سال 2010 پایان می یابد. ناو آماده بهره برداری در آبهای دریای سفید و در نزدیکی موسسه "سیوماش" لنگر خواهد انداخت. این نیروگاه تامین کننده برق لازم برای خود کارخانه "سیوماش" خواهد بود.

بهای این پروژه حدود 200 میلیون دلار برآورد می شود، اما پس از 7 سال آن را جبران می کند، در عین اینکه طول عمر آن 38 سال محاسبه شده است. در عین حال آنطور که کرینکو تاکید نمود، فعلاً صحبت درباره پروژه ای آزمایشی است، در صورتی که نیروگاه های برق اتمی شناور ارزانتر تمام شده و سریعتر نیز، یعنی طی 3 سال ساخته می شوند. نوع جدید نیروگاه ها در مقایسه با هم خانواده زمینی خود همانند نمونه ای کوچک می باشد که توان آن نیز 15 بار کمتر است. دورنمای این نیروگاه ها وعده های بسیاری می دهند. آنها رویای مناطق دارای کمبود انرژی و موسسات صنعتی بزرگی هستند که نیازمند تامین انرژی بدون نقص در شرایط نبود منبع مرکزی انرژی هستند. نیروگاه اتمی شناور پس از ساخت از طریق آبی به منطقه کاری خود منتقل می شود. تا سال 2015 روسیه درصدد ساخت 7 نیروگاه اتمی شناور برای رفع نیازهای داخلی خود می باشد. مناطق دارای اولویت برای استقرار آنها نیز چوکوتکا، کامچاتکا، یاکوتیا و تایمیر (مناطق شمالی) می باشند.

دقیقاً همین قابلیت جابجایی فناوری جدید روسیه که می تواند در هر منطقه ساحلی قرار گیرد، توجه کشورهای خارجی ساحلی و جزایر را به خود جلب کرده است. طبق اطلاعات "روس اتم" تا کنون 12 کشور، از جمله اندونزی، مالزی و چین به این پروژه تمایل نشان داده اند. این نیروگاه که در استان آرخانگلسک ساخته می شود، مدلی خواهد بود که صادر کنندگان بالقوه می توانند بدان نظر بیندازند.

اصل کارکرد نیروگاه اتمی شناور چیست؟ در آبهای ساحلی، در نزدیک محلی که برق بدان منتقل خواهد شد (شهر، روستا، موسسه)، محدوده ای مناسب برای پهلو گرفتن انتخاب می شود. این واحد نیروگاهی به محل مربوطه بکسیر می شود. در آن 2 رآکتور و جایگاهی برای خدمات فنی و کاری وجود دارد. در ساحل باید زیرساختار کوچکی، شامل ترانسفورماتور، دستگاه مَکش و غیره وجود داشته باشند. این نیروگاه توانایی برق رسانی به شهری با 200 هزار ساکن را دارد. اگر توان آن برای تصفیه آب دریایی استفاده شود، می تواند روزانه 240 هزار متر مکعب آب تصفیه شده دهد. نیروگاه اتمی شناور سبب صرفه جویی 200 هزار تن ذغال سنگ و 100 هزار تن مازوت در سال می شود. چرخه حیاتی آن بطور کامل توسط زیرساختارهای مجتمعات هسته ای روسیه تامین می شود.

درباره این نیروگاه، منتقدین از آسیب پذیری آن از لحاظ زیست محیطی در صورت وقوع بلایای طبیعی صحبت می کنند. اما منطقه اسقرار نیروگاه تحت نظارتی بسیار دقیق و با در نظر داشتن قوانینی معین انتخاب می شود، هیچکس آن را در منطقه سونامی قرار نمی دهد. کرینکو نیز اطمینان خاطر داد که "چرنوبیل شناور رخ نخواهد داد. تضمین آن نیز تجربه عظیم بهره برداری از رآکتورهای اتمی در نیروی دریایی یخ شکن روسیه است.

طراحان نیروگاه برق اتمی شناور، تایید می کنند که سطح اطمینان و ایمنی آن بالا بسیار بالا بوده و هیچ واکنش رادیواکتیویته ای با محیط زیست رخ نخواهد داد. زمانی که نیروگاه لنگر کشیده و محل را ترک کند، در محل استقرار آن هیچگونه آلودگی وجود نخواهد داشت.

در طراحی سیستم امنیتی این نیروگاه تهدیدات تروریستی نیز در نظر گرفته شده اند. جلوگیری از دسترسی غیر مجاز به مواد موجود در عرشه به کمک دستاوردهای جدید علمی و فنی در این زمینه تامین می شود. بعنوان مثال از فن شناسایی فردی از طریق اثر انگشت و عنبیه چشم استفاده می شود. محافظت در برابر امکان حمله احتمالی گروه های تخریبگر تروریستی نیز در نظر گرفته شده است. همچنین هواپیمایی که روی نیروگاه اتمی شناور سقوط کند نیز نمی تواند رآکتور را ویران کند.

در عین حال روسیه به علاقمندان، خود نیروگاه اتمی را نخواهد فروخت. بلکه تنها محصول آن، یعنی برق فروخته می شود. بدین ترتیب تمامی سوالات مربوط به اشاعه فناوری های هسته ای نیز از میان برداشته می شوند. نیروگاه اتمی شناور با پرچم روسیه به ساحل کشوری می رود که قرارداد را امضا کرده است، در محل مناسب لنگر می اندازد، با سازمان های فنی محلی در ساحل ارتباط برقرار می کند. پس از آن رآکتور آغاز به کار می کند و مشتری برق دریافت می کند.

 

 


دانلود با لینک مستقیم


تحقیق در مورد بررسی کلی نیروگاه های حرارتی و نیروگاه های اتمی