فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

پایان نامه کلیات و اجزاء توربین گاز

اختصاصی از فی توو پایان نامه کلیات و اجزاء توربین گاز دانلود با لینک مستقیم و پر سرعت .

پایان نامه کلیات و اجزاء توربین گاز


پایان نامه کلیات و اجزاء توربین گاز

این فایل درقالب ورد و قابل ویرایش در 180 صفحه می باشد .

پایان نامه کلیات و اجزاء توربین گاز

فهرست مطالب

فصل اول کلیات و اجزای توربین گاز

۱- ۱- توربین گاز
۱- ۱- ۱- کمپرسور
۱- ۱- ۲- سیستم احتراق
۱- ۱- ۲- ۲- نازل سوخت
۱- ۱- ۲- ۳- جرقه زن
۱- ۱- ۲- ۴- شعله بین
۱- ۱- ۲- ۵ – لوله های مرتبطه شعله
۱- ۱- ۲- ۶- قطعه انتقال دهنده گاز داغ
۱- ۱- ۳- توربین گاز
۱- ۲- اجزای فرعی توربین گاز
۱- ۲- ۱- اجزای راه انداز
۱- ۲- ۲- جعبه دنده
۱- ۲- ۳- کوپلینگ
۱- ۲- ۴- کلاچ ها
۱- ۲- ۵- یاتاقانها
۱- ۱- یاتاقان تراست با بار
۱- ۲- یاتاقان تراست بی بار
۱- ۲- ۶- اجزای دیگر
۱- ۳- سیستمهای فرعی توربین گاز
۱- ۳- ۱- سیستم روغنکاری
۱- ۳- ۲- سیستم آب خنک کن
۱- ۳- ۳- سیستم سوخت توربین های گازی
۱- ۳- ۴- سیستم هوای خنک کن
۱- ۴- کنترل و حفاظت توربین گاز
۱- ۵- مزایا و معایب توربین گاز

فصل دوم سیکل ترمودینامیکی توربین گاز

۲- ۱- نگرش کلی بر توربینهای گاز
۲- ۲- مقایسه نیروگاه گازی با نیروگاههای دیگر
۲- ۳- فرآیند توربینهای گاز
۳- ۳- سیکل استاندارد هوایی براتیون
۲- ۵- نسبت فشار برای حداکثر کار خالص ویژه سیکل نظری
۲- ۶- سیکل عملی براتیون
۲- ۷- راندمان محفظه احتراق
۲- ۸- بازده پلی تروپیک
۲- ۹ـ تعیین معادله راندمان پلی تروپیک
۲- ۱۰- نسبت فشار برای حداکثر کار خروجی در سیکل عملی توربین گاز
۲- ۱۱- نسبت فشار برای حداکثر راندمان حرارتی سیکل عملی

فصل سوم روشهای افزایش قدرت و راندمان توربین گاز

۳- ۱- توربین گاز با بازیاب
۳- ۱- ۱- توربین گاز همراه با بازیاب حرارتی مبدل حرارتی
۳- ۱- ۲- روش تولید بخار با استفاده از بویلرهای بازیاب
۳- ۲- سیکل توربین گاز با گرم کم مجدد
۳- ۳- توربین گاز با تزریق بخار
۳- ۳- ۱ـ توربین گاز با تزریق بخار به ورودی توربین گاز
۳- ۳- ۲- توربین گاز با تزریق بخار به خروجی کمپرسور
۳- ۴- توربین گاز با خنک کاری
۳- ۴- ۱- خنک کاری میانی
۳- ۴- ۲- خنک کاری بوسیله پاشش آب به ورودی کمپرسور
۳- ۴- ۳- خنک کاری هوای ورودی به توربین بوسیله سیستم ذخیره یخ
۳- ۴- ۴- خنک کاری هوای ورودی به کمپرسور به وسیله چیلر تراکمی
۳- ۴- ۵- خنک کاری هوای ورودی به کمپرسور به وسیله چیلر جذبی
۳- ۵- مقایسه کلی روشهای موجود وانتخاب روشهای مفیدبه منظورافزایش قدرت خروجی ازتوربین گاز

فصل چهارم فعالیتهای انجام شده در زمینه سیستم Fog
۴ـ۱ـ Mee Industries Inc
۴ـ۲ـ Henry Vogt
۴ـ۳ـ Premier Industries Ins
اجزای اصلی کولر تبخیری

دریافت فایل

فصل پنجم اثرات سرمایش هوای ورودی بر روی اجزای سیستم توربین گاز

۵- ۱- تاثیر سرمایش هوا بر روی کمپرسور توربین گاز
۵- ۱- ۱- دمای خروجی از کمپرسور
۵ـ۱ـ۲ـ کار کمپرسور
۵- ۱- ۳- نسبت فشار
۵- ۱- ۴- شرایط کارکرد
۵- ۱- ۵- افت دما در رابطه مافوق صوت
۵- ۲- تاثیر سرمایش هوا بر روی اتاق احتراق
۵- ۳- تاثیر سرمایش هوا بر روی توربین
۵- ۳- ۱- دمای خروجی از توربین
۵- ۳- ۲- کار خالص توربین
۵- ۴- تاثیر سرمایش بر روی راندمان کلی توربین گاز
۵- ۵- عوارض جانبی و عوامل تاثیر گذار بر تور بین گاز
۵- ۵- ۱- تاثیر ارتفاع
۵- ۵- ۲- افت فشار ورودی

فصل ششم روش Fog

۶- ۱- پروژه افزایش قدرت واحد گازی با استفاده از سیستم خنک کننده Fog
۶- ۲- معیارهای انتخاب برای سیستم های خنک کن ورودی
۶- ۳- خنک کاری پاششی در ورودی توربین گاز
۶- ۴- تولید Fog
۶- ۴- ۱- توزیع اندازه ذرات
۶- ۵- ملاحظات خوردگی در کمپرسورهای توربین گاز
۶- ۶- نحوه توزیع Fog فاکتور موثر بر تبخیر
۶- ۷- نازلها، پمپها و سایر تجهیزات
۶- ۸- سیستم کنترل
۶- ۹- مکان نازلها در توربین گازی
۶- ۱۰- کیفیت آب مصرفی
۶- ۱۱- لیست نیازها و موارد نگهداری سیستم Fog توربین گازی
۶- ۱۲- نمودار رطوبت سنجی پاشش ورودی
۶- ۱۳- شرایط محیطی و قابلیت کاربرد پاشش Fog در ورودی
۶- ۱۴- بررسی امکان استفاده از سیستم Fog در نواحی مختلف آب و هوایی
۶- ۱۵- تخمین کل هزینه های سرمایه گذاری نخستینی سیستم Fog
۶- ۱۶- مطالعات و آزمایشهای انجام شده

فصل هفتم فشار ضعیف Fog

فاگ فشار ضعیف
۷- ۱- زمینه اولیه
۷- ۲- Fog فشار قوی
۷- ۳- نحوه قرار گیری نازلها در فاگ فشار ضعیف
۷- ۴- عوامل فیزیکی
۷- ۵- انجام عملی
۷- ۶- نازلهای فاگ فشار ضعیف
۷- ۷- PACT افزایش قدرت به وسیله تکنولوژی خنک سازی هوای ورودی
۷- ۸- دلایل نصب سیستم خنک کننده در ورودی آن
۷- ۹- کاهش NOx
۷- ۱۰- سیستم فاکینگ PACT
۷- ۱۱- مواد و جزئیات دیگر
۷- ۱۲- محاسبه نمونه
۷- ۱۳- دلایل اقتصادی فاگ فشار ضعیف

ضمائم و پیوستها
پیوست۱ نمودار مقایسه قطر ذرات آب بر حسب حجم قطرات آب
پیوست۲ نمودار میزان انتشار Noxدر ازای افزایش درجه حرارت محیط
پیوست۳ نمودار قدرت بر حسب دما در طول یک شبانه روزپ
یوست۴ نمودار میزان انتشار CO2 در ازای افزایش درجه حرارت محیط
پیوست ۵ نمای ظاهری یک توربین گاز
پیوست ۶ جدول مقایسه نسبی هر کدام از روشها از نظر هزینه سرمایه گذاری شده
پیوست ۷ نحوه چیدمان نازلهای سیستم در قبل از اتاق فیلتر
پیوست ۸ نمودارهای مقایسه روش فاگ با روشهای دیگر
پیوست ۹ تصویر کلی از یک سیستم پمپ اسکید و اجزائ متعلق به آن پیوست ۱۰ تصویری از یک فیلتر مدیا
پیوست ۱۱ جدول مقایسه روش فاگ با دیگر روشها از نظر اقتصادی از نظر تغییرات سیستم
پیوست ۱۲ نمودار مقایسه روش فاگ با دیگر روشها از نظر اقتصادی

 


دانلود با لینک مستقیم


پایان نامه کلیات و اجزاء توربین گاز

پایان نامه کارشناسی مکانیک - انتخاب یک سیستم خنک سازی توربین گازی

اختصاصی از فی توو پایان نامه کارشناسی مکانیک - انتخاب یک سیستم خنک سازی توربین گازی دانلود با لینک مستقیم و پر سرعت .

پایان نامه کارشناسی مکانیک - انتخاب یک سیستم خنک سازی توربین گازی


پایان نامه کارشناسی مکانیک - انتخاب یک سیستم خنک سازی توربین گازی

 

این فایل در قالب ورد و قابل ویرایش در  230 صفحه می باشد.

 

  1. مقدمه
  2. خنک سازی توربین بعنوان یک تکنولوژی کلیدی برای بهینه سازی موتورهای توربین گازی
  3. چالش های خنک سازی برای دماهای پیوسته درحال افزایش گاز ونسبت فشارکمپرسور
  4. تکنیک های خنک سازی استفاده شده متداول
  5. تاثیر خنک سازی
  6. مشکلات خنک سازی
  7. ترکیب پوشش های حصار حرارتی و خنک سازی
  8. فرایند بهبود خنک سازی ایرفویل
  9. تعریف پارامترهای شباهت انتقال جرم و حرارت اصلی
  10. کنش متقابل انتقال جرم – حرارت در لایه مرزی ایرفویل
  11. نقش تشابه در رقابت تجربی حرارت ایرفویل توربین و انتقال جرم
  12. موضوعات انتقال حرارت گذرا و پایدار در بخش داغ موتور
  13. دمای فلز و تاثیر آن روی عمر اجزای توربین
  14. موضوعات مربوط به تغییرمکان های دمایی گذرای روتوربه استاتوروکنترل فاصله نوک آزاد
  15. خنک سازی نازل توربین
  16. تقابل با محفظه احتراق
  17. انتقال حرارت پره
  18. -خمیدگی
  19. -تاثیرات ناهمواری
  20. -اغتشاش
  21. خنک سازی فیلم پره
  22. -نسبت دمش
  23. -انحنای سطح
  24. -گرادیان فشار
  25. -آشفتگی جریان اصلی
  26. -شیارهای خنک سازی فیلم
  27. -تجمع فیلم
  28. -تاثیر تزریق هوای خنک سازی فیلم روی انتقال حرارت سطح
  29. موضوعات خنک سازی دیواره نهایی
  30. خنک سازی تیغه توربین
  31. تاثیرات سه بعدی و دورانی روی انتقال حرارت تیغه
  32. -نیروهای دورانی
  33. -تاثیرات سه بعدی
  34. پروفایل دمای گاز شعاعی
  35. تاثیرات ناپیوستگی
  36. تکنیک های خنک سازی درونی تیغه
  37. -گذرگاه های درونی هموار
  38. – تیرک ها/فین ها (نوارهای زاویه دار یا طولی)
  39. -پین فین ها
  40. -تاثیر جت
  41. -جریان گردابی
  42. -خنک سازی فیلم
  43. موضوعات خنک سازی سکو و راس
  44. خنک سازی ساختارهای روتور و استاتور
  45. -منبع خنک سازی و سیستم های هوای ثانویه
  46. بافر کردن مجموعه دیسک و روش های خنک سازی دیسک
  47. خنک سازی ساختار حفاظتی نازل و جایگاه توربین
  48. خنک سازی  محفظه احتراق
  49. -تاثیر تحول طراحی  محفظه احتراق روی تکنیک های خنک سازی
  50. خنک سازی تعریق
  51. خنک سازی نشتی
  52. همرفتی بخش پشتی افزوده
  53. پوشش دهی حصار حرارتی
  54. انتقال حرارت تجربی پیشرفته و معتبر سازی خنک سازی
  55. ارزیابی انتقال حرارت بیرونی و تکنیک های معتبر سازی خنک سازی
  56. -رنگ حساس به فشار
  57. -ارزیابی غیر مستقیم آشفتگی
  58. ارزیابی های انتقال حرارت و جریان داخلی
  59. شبیه سازی انتقال حرارت مزدوج و معتبر سازی در یک آبشار داغ
  60. -معتبر سازی تاثیر خنک سازی تیغه در آبشار داغ
  61. شرایط مرزی تجربی دیسک توربین
  62. تائید خنک سازی در یک آزمون موتور
  63. -ابزار بندی متعارف
  64. -پیرومتر درج شده درگاه بروسکوب
  65. -رنگ های حرارتی دما بالا
  66. بررسی های چند نظامی در انتخاب سیستم خنک سازی توربین گازی

مقدمه

این فصل عمدتاً روی موضوعات انتقال جرم و حرارت تمرکز می یابد چون آنها برای خنک سازی اجزا ی دستگاه توربین بکار می روند و انتظار می رود که خواننده با اصول مربوطه در این رشته ها آشنایی داشته باشد. تعدادی از کتابهای فوق العاده (1-7) در بررسی این اصول توصیه می شوند که شامل Streeter، دینامیک ها یا متغیرهای سیال Eckert و Drake، تجزیه و تحلیل انتقال جرم و حرارت، Incropera و Dewitt، اصول انتقال حرارت و جرم, Rohsenow و Hartnett، کتاب دستی انتقال حرارت, Kays، انتقال جرم و حرارت همرفتی, Schliching، تئوری لایه مرزی، و Shapiro، دینامیک ها و ترمودینامیک های جریان سیال تراکم پذیر.

وقتی یک منبع جامع اطلاعات موجود باشد. مولف این فصل خواننده را به چنین منبعی ارجاع میدهد. با این وجود وقتی داده ها در صفحات یا مقالات گوناگون پخش شده باشند, مولف سعی می کند که این داده ها را در این فصل بطور خلاصه بیان نماید.

 

 

 

 

فهرست اسامی نمادها

a- سرعت صورت

b- بعد خطی در عدد دورانی

  • منطقه مرجع, منطقه حلقوی مسیر گاز

Ag – سطح خارجی ایرفویل

 - عدد شناوری

BR,M- نرخ وزش

CP- حرارت ویژه در فشار ثابت

d-قطر هیدرولیکی

e- ارتفاع آشفته ساز

 -عدد اکرت

g- شتاب جاذبه زمین

FP= پارامتر جریان برای هوای خنک سازی

G= پارامتر ناهمواری انتقال حرارت

Gr=  - عدد گراشوف

h- ضریب انتقال حرارت

ht- ضریب انتقال حرارت افزایش یافته با آشفته سازها

 - نسبت شار اندازه حرکت

k- رسانایی حرارتی

 -رسانایی حرارتی سیال

L-طول مرجع

m-نرخ جریان جرم

mc- نرخ جریان خنک سازی

M= - نرخ دمش

Ma= V/a- عدد ماخ

rpm وN- سرعت روتور

NUL= hL/kf- عدد نوسلت

Pr=  -عدد پرانتل

PR= نسبت فشار کمپرسور

Ps=فشار استاتیک

Pt= فشار کل

Ptin-فشار کل ورودی

Q- نرخ انتقال حرارت- نرخ انتقال انرژی

- شار حرارتی

p- شیب بام آشفته ساز

r- وضعیت شعاعی

R- شعاع میانگین, شعاع محفظه احتراق (کمباستر), مقاومت, ثابت گاز

Ri-شعاع موضعی تیغه

RT- شعاع نوک تیغه

Rh=شعاع توپی یا مرکز تیغه

Red=  - عدد رینولدز براساس قطر هیدرولیکی d

ReL= - عدد رینولدز براساس L

Ro= b/U - عدد دورانی

Ros= 1/Ro- عدد Rossby

s-فاصله سطح نرمال شده

St- عدد استانتون

t- زمان

Tc- دمای هوای خنک سازی و نیز دمای تخلیه کمپرسور

Tf- دمای فیلم سطح

Tg- دمای گاز

Tgin- دمای گاز ورودی

Tm- دمای فلز و نیز دمای لایه مخلوط سازی

Tref- دمای مرجع

Tst- دمای استاتیک موضعی

Tu- شدت جریان آشفتگی

- نوسان سرعت محوری محلی

uin- سرعت گاز  ورودی

U,V,W- مولفه های سرعت جریان خنک سازی یا جریان اصلی در جهات  z, y, x

w- پهنا

- زوایه شیب جت فیلم

- زاویه بین فیلم جت و محورهای جریان اصلی

- نسبت حرارتی ویژه

- ضریت حجمی انبساط حرارتی, همواری سطح

- قابلیت انتشار حرارتی گردابی

 - قابلیت انتشار اندازه حرکت گردابی

- تاثیر انتقال حرارت

- تاثیر خنک سازی

- بارزه حرارتی

 - ویسکوزیته مطلق گاز

- چگالی

- حد تنش گسیختگی

- فرکانس دورانی

زیر نویس ها

aw- دیوار آدیاباتیک                     d- براساس قطر لبه هدایت کننده (سیلندر)

b- جسم                                   o-کل                                                     

C- خنک کننده                          w-دیوار

- ویژگی جریان اصلی(جریان آزاد)tur-توربین

f- فیلم                                    hc- آبشار داغ   

 

 

خنک سازی توربین بعنوان یک تکنولوژی کلیدی برای بهینه سازی موتورهای توربین گازی

عملکرد یک موتور توربین گازی تا حد زیادی تحت تاثیر دمای ورودی توربین می باشد و افزایش عملکرد قابل توجهی را می توان با حداکثر دمای ورودی مجاز توربین بدست آورد. از نقطه نظر عملکردی، احتراق با دمای ورودی توربین در حدود می تواند یک ایده ال به شمار آید چون هیچ کاری برای کمپرس کردن هوای مورد نیاز برای رقیق کردن محصولات احتراقی به هدر نمی رود. بنابراین روند صنعتی جاری, دمای ورودی توربین را به دمای استوکیومتری سوخت  بخصوص برای موتورهای نظامی, نزدیکتر می کند. با این وجود دمای مجاز اجزای فلزی نمی تواند از تخطی کند. برای کارکردن در دماهای بالای این حد, یک سیستم موثر خنک سازی اجزا مورد نیاز است. پیشرفت در خنک سازی, یکی از ابزار اصلی برای رسیدن به دماهای ورودی توربین بالاتر می‌باشد و این امر به اصلاح عملکرد و بهبود عمر توربین منتهی می شود. انتقال حرارت یک عامل مهم طراحی برای همه بخش های یک توربین گاز پیشرفته بخصوص در بخش های توربین و محفظه احتراق می باشد. در بحث وضعیت خنک سازی مصنوعی بخش داغ، باید به خاطر داشته باشید که طراح توربین مرتباً تحت فشارهای شدید برنامه زمانبدی توسعه, قابلیت پرداخت, دوام و انواع دیگر محدودیت های درون نظامی می باشد و همه اینها قویاً انتخاب یک طرح خنک سازی را تحت تاثیر قرار میدهند.


دانلود با لینک مستقیم


پایان نامه کارشناسی مکانیک - انتخاب یک سیستم خنک سازی توربین گازی

بررسی اجمالی عملکرد توربین های انبساطی رشته آبیاری

اختصاصی از فی توو بررسی اجمالی عملکرد توربین های انبساطی رشته آبیاری دانلود با لینک مستقیم و پر سرعت .

بررسی اجمالی عملکرد توربین های انبساطی رشته آبیاری


بررسی اجمالی عملکرد توربین های انبساطی رشته آبیاری

 

فرمت فایل : WORD ( قابل ویرایش ) تعداد صفحات:100

مقدمه:

کشاورزی وزراعت در ایران بدون توجه به تأمین آب مورد نیازگیاهان میسرنیست. بنابراین بایستی برنامه ریزی صحیح برای آن بخصوص درشرایط خشکسالی صورت گیرد. برنامه ریزی صحیح مستلزم محاسبه دقیق نیاز آبی گیاهان می‌باشد. براساس روش‌های موجود مبنای محاسبات نیاز آبی گیاهان، تبخیر تعرق مرجع و ضرائب گیاهی است. تبخیر تعرق مرجع توسط لایسیمتر اندازه گیری می‌شود و برای سادگی کار می‌توان آنرا با توجه به نوع منطقه از روش‌های تجربی نیز تخمین زد. ضرائب گیاهی نیز از مطا لعات لایسیمتر قابل محاسبه است. این ضرائب تابعی از عوامل مختلفی از جمله اقلیم می‌باشد. بنابراین بایستی درهر منطقه ای با دقت برای هرمحصولی محاسبه شود. (19) برای محاسبه و برآورد مقدارتبخیر تعرق سازمان خوار باروکشاورزی ملل و متحد«FAO » تقسیم بندی زیر را منظور نموده است: اندازه گیری مستقیم تبخیر تعرق به وسیله لایسیمتراندازه گیری مستقیم تبخیر بوسیله تشتک یا تبخیر سنجفرمول‌های تجر بیروشهای آئرودینامیکتراز انرژی (5) بعضی از روشها فقط جنبه تحقیقاتی داشته تا بتوانند فرایند‌های انتقالی بخار آب را بهتر و عمیق تر بررسی نمایند. برخی دیگر به جهت نیاز در برنامه‌های روزانه کشاورزی بکار می‌روند. ولی دقت و اصالت روش‌های تحقیقاتی را ندارد. به هر حال برای عملیات روزانه درمزارع می‌توان از روشهایی که نتیجه آنها بیش از ده درصد با مقدار واقعی تبخیر تعرق متفاوت نباشد استفاده نمود.

فهرست مطالب:

اهمیت کشت سیب زمینی

اهمیت سیب زمینی در ایران

منطقه مورد مطالعه

استان خراسان

استان سمنان

سابقه تحقیقات در زمینه تبخیر -تعرق

عوامل موثر بر تبخیر و تعرق

عوامل هواشناسی

فاکتورهای گیاهی

شرایط محیطی و مدیریتی

روش سازمان خواربار و کشاورزی ملل متحد (FAO)

روش فائو – پنمن- مانتیس

تعیین گرمای نهان تبخیر ()

تعیین شیب منحنی فشار بخار ()

تعیین ضریب رطوبتی ()

تعیین فشار بخار اشباع (ea)

تعیین فشار واقعی بخار (ed)

تعیین مقدار تابش برون زمینی (Ra)

تعداد ساعات رو شنایی (N)

تابش خالص (Rn)

شار گرما به داخل خاک (G)

سرعت باد در ارتفاع 2 متری

لایسیمتر

تارخچه ساخت لایسیمتر

انواع لایسیمتر

لایسیمتر زهکشدار

لایسیمتر وزنی

لایسیمتر‌های وزنی هیدرولیک

میکرو لایسیمتر‌های وزنی

طبقه بندی لایسیمترها از نظر ساختمانی

لایسیمترهای با خاک دست نخورده

لایسیمتر‌های با خاک دست خورده

لایسیمترهای قیفی ابر مایر

مقدمه

اهمیت کشت سیب زمینی

اهمیت سیب زمینی در ایران

منطقه مورد مطالعه

استان خراسان

استان سمنان

سابقه تحقیقات در زمینه تبخیر -تعرق

عوامل موثر بر تبخیر و تعرق

عوامل هواشناسی

فاکتورهای گیاهی

شرایط محیطی و مدیریتی

روش سازمان خواربار و کشاورزی ملل متحد (FAO)

روش فائو – پنمن- مانتیس

تعیین گرمای نهان تبخیر

تعیین شیب منحنی فشار بخار

تعیین ضریب رطوبتی

تعیین فشار بخار اشباع

تعیین فشار واقعی بخار

تعیین مقدار تابش برون زمینی

تعداد ساعات رو شنایی (N)

تابش خالص (Rn)

شار گرما به داخل خاک (G)

سرعت باد در ارتفاع 2 متری

لایسیمتر

تارخچه ساخت لایسیمتر

انواع لایسیمتر

لایسیمتر زهکشدار

لایسیمتر وزنی

لایسیمتر‌های وزنی هیدرولیک

میکرو لایسیمتر‌های وزنی

طبقه بندی لایسیمترها از نظر ساختمانی

لایسیمترهای با خاک دست نخورده

لایسیمتر‌های با خاک دست خورده

لایسیمترهای قیفی ابر مایر

محل انجام طرح

معرفی طرح و نحوه ساخت لایسیمتر

تهیه بستر و نحوه کشت

محاسبهَ ضریب گیاهی

انتخاب روش مناسب برآورد تبخیر-تعرق

پهنه بندی نیاز آبی سیب زمینی

بافت خاک

اندازه گیری پتانسیل آب در گیاه

محاسبه ضریب گیاهی (kc) سیب زمینی

محاسبه تبخیر تعرق و تحلیلهای آماری

پهنه بندی نیازآبی گیاه سیب زمینی

بحث در مورد نتایج

نتیجه گیری

پیشنهادات

منابع و ماخذ

جداول

اشکال


دانلود با لینک مستقیم


بررسی اجمالی عملکرد توربین های انبساطی رشته آبیاری

دانلود مدل سه بعدی توربین بادی Turbin 3D Model for Solidworks

اختصاصی از فی توو دانلود مدل سه بعدی توربین بادی Turbin 3D Model for Solidworks دانلود با لینک مستقیم و پر سرعت .

دانلود مدل سه بعدی توربین بادی Turbin 3D Model for Solidworks


دانلود مدل سه بعدی توربین بادی Turbin 3D Model for Solidworks

مدل سه بعدی توربین بادی

این مدل شامل کلیه نقشه های سه بعدی و فایل اسمبلی توربین بادی می باشد که به صورت آماده تحت نرم افزار سالید ورک عرضه می گردد.

 

مدل سه بعدی توربین


دانلود با لینک مستقیم


دانلود مدل سه بعدی توربین بادی Turbin 3D Model for Solidworks

پاورپوینت-ppt- انرژی جریان های جزر و مد آب- در 32 اسلاید-powerpoint

اختصاصی از فی توو پاورپوینت-ppt- انرژی جریان های جزر و مد آب- در 32 اسلاید-powerpoint دانلود با لینک مستقیم و پر سرعت .

پاورپوینت-ppt- انرژی جریان های جزر و مد آب- در 32 اسلاید-powerpoint


پاورپوینت-ppt- انرژی جریان های جزر و مد آب- در 32 اسلاید-powerpoint

نیروی جاذبه ی ماه آب اقیانوس ها و دریا ها را جا به جا می کند که در ساحل به صورت بالا و پایین رفتن سطح آب ( موج ) آشکار می شود . نیروگاه های جزر و مدی با استفاده از نیروی جزر و مد ، برق تولید می کنند . در این نیروگاه ها ، سدی به نام آب بند بین دریا و دهانه ی رودخانه می سازند و توربین هایی نیز در این مکان جای می دهند . وقتی آب دریا بالا می آید ، جریان آب پس از به کار انداختن توربین ها ، وارد مخزن سد می شود و زمانی که آب دریا پایین می آید ، آب از راه حوضچه ی رودخانه و از مجرای سد ، به دریا بر می گردد و در مسیر برگشت خود ، توربین ها را دوباره به گردش در می آورد . بنابراین توربین ها در هر دو حالت کار می کنند و برق تولید می شود . نیروی جزر و مد یکی از گونه های انرژی های اقیانوسی است که امروزه از آن برای تولید برق بهره برداری می کنند . پژوهشگران هم اکنون در حال طراحی و ساخت توربین هایی هستند که بتوان آن ها را در بستر دریا و در جاهایی که جزر و مد زیاد است ، کار گذاشت .

انرژی امواج آب

پژوهشگران برآورد کرده اند که موج هایی که بر ساحلی به طول دو کیلومتر می کوبند ، برابر یک نیروگاه کوچک با سوخت زغال سنگ می توانند انرژی تولید کنند . کارشناسان در حال بررسی روش های گوناگون بهره برداری هر چه بیش تر از انرژی امواج هستند . هم اکنون از سه نوع سامانه ی مختلف شناور ، ستونی و موجی استفاده می شود . در مولد های شناور ، یک دسته شناور در آب قرار دارند ، و هنگامی که موج عبور می کند ، این شناور ها بالا و پایین می روند . این حرکت ها روغنی را تلمبه می کنند تا توربینی را به حرکت در آورد و برق تولید کند ، ستون های نوسان کننده نیز پر از هوا هستند ، حرکت موج باعث می شود که آب از پایین به درون این ستون ها برود و از آن بیرون بیاید و در نتیجه هوای بالای ستون را بالا و پایین بفرستد ، هوای سامانه های موجی نیز آب بخش های بالایی موج را دریافت می کنند . این آب یک توربین را به کار می اندازد و سپس به دریا بر می گردد.

 

انرژی گرمایی اقیانوس ها
اقیانوس ها دو سوم سطح کره ی زمین را پوشانده اند . هر روز تابش خورشید سطح آب اقیانوس ها را گرم می کند . بنابراین اقیانوس ها مقدار زیادی از انرژی گرمایی را در خود ذخیره می کنند که به انرژی گرمایی اقیانوسی معروف است . در مناطق گرمسیری ، سطح آب تا 25 درجه ی سانتی گراد گرم می شود ، از آبی که تا این اندازه گرم است می توان برای تولید الکتریسیته ( توضیح زیر را بخوانید ) نیروگاه های انرژی گرمایی اقیانوسی در مقیاس کوچک و به طور آزمایشی طراحی و ساخته شده اند و کارآیی آن ها در دست بررسی است .
ماشین مبدل انرژی گرمایی اقیانوسی
در این دستگاه ها از آب گرم لایه یذ سطحی ، برای تبخیر مایعی مانند آمونیاک استفاده می کنند که در دمای پایین می جوشد . فشار گاز حاصل از تبخیر ، توربین را به گردش در می آورد ، در مرحله ی بعد ، این گاز با آب سردی که از عمق آب بالا می آید ، متراکم می شود ، و دوباره به حالت مایع در می آید و این چرخه بار ها تکرار می شود .

انرژی جزر و مد و امواج دریا 14 مرداد 1387 ساعت 8:44        انرژی دریایی یا اقیانوسی ، یکی از انواع انرژی های تجدیدپذیر است که در کنار منابع دیگری نظیر انرژی خورشیدی و باد ، مورد توجه قرار گرفته است . انرژی امواج و انرژی جزر و مد را می توان مهمترین زیر مجموعه های انرژی های دریایی به شمار آورد . به دلیل تفاوت های موجود در ویژگی ها و روش های فنی جذب آنها ، توسعه این دو منبع راه متفاوت و مستقلی را طی کرده است . نیروگاه های جزر و مدی به دلیل مشابهت با نیروگاه های آبی و استفاده از فناوری آماده آنها ، به پیشرفت های سریعی نایل آمده است . اما بروز مشکلات زیست محیطی باعث شده است که تحول و ایجاد تغییرات اساسی در روش کار ضروری شود. توسعه آنها به روش قبل به رغم پیشرفت های ذکر شده ، در عمل محدود شده است. نیروگاه های موجی از تنوع زیادی برخوردار هستند. برخی بر روی آب شناورند و برخی دیگر در ساحل نصب می شوند. همچنین نحوه درگیری آنها با امواج و در نتیجه نوع حرکتی که جذب می کنند با هم تفاوت بسیار دارد. علاوه بر کارهای مطالعاتی، نمونه های کوچکی نیز از برخی سیستم های موجی در نقاط مختلف جهان ساخته شده و مورد آزمایش قرار گرفته است. امواج در اثر انتقال انرژی از باد به دریا به وجود می آیند. نرخ این انتقال انرژی بستگی به سرعت باد و نیز به مسافتی دارد که در طول آن باد با سطح آب در فعل و انفعال بوده است. موج ها به خاطر جرم آبی که نسبت به سطح متوسط دریا جابه جا شده ، انرژی پتانسیل و به خاطر سرعت ذرات آب ، انرژی جنبشی را با خود حمل می کنند. انرژی ذخیره شده از طریق اصطکاک و اغتشاش و با شدتی که بستگی به ویژگی امواج و عمق آب دارد ، تلف می شود. موج های بزرگ در آب های عمیق انرژی خود را با کندی بسیار از دست می دهند ، در نتیجه سیستم های امواج بسیار پیچیده هستند و اغلب هم از بادهای محلی و هم از توفان هایی که روزها قبل در دور دست اتفاق افتاده اند سرچشمه می گیرند. امواج توسط ارتفاع، طول موج و دوره تناوبشان مشخص می شوند. قدرت امواج معمولاً بر حسب کیلووات بر متر بیان می شود که نمایانگر شدت انتقال یا عبور انرژی از یک خط فرضی به طول یک متر و موازی با جبهه موج است. امروزه فناوری تولید انرژی از موج اقیانوس ها وجود دارد، به طوری که بیش از 400 اختراع در این زمینه به ثبت رسیده است که از آنها به سه روش اصلی استفاده از کانالی به شکل مخروط ناقص ، استفاده از حرکت عمومی امواج اقیانوس توسط مکانیزم های گوناگون و استفاده از یک ستون نوسانی آب می توان اشاره کرد. جزر و مد دریا در اثر جاذبه ماه و خورشید به هنگام گردش زمین به وجود می آید. نیروی جاذبه ماه باعث ایجاد برآمدگی در آب ها شده ...

امواج در اقیانوس باز بر اثر عمل باد روی سطح اقیانوس تولید می‌شوند. کل انرژی موج توزیع شده در زمین در حدود  〖2.5*10〗^6 Mw تخمین زده می‌شود که در حدود انرژی کلی توزیعی جزر و مد است. انرژی موج منبع تجدید شونده است (انرژی برگشت پذیر) و معمولا نسبت به انرژی باد بیشتر قابل تولید است. انرژیی که از امواج استخراج می‌شود، دوباره به سرعت توسط برهمکنش با دو سطح اقیانوس پر می‌شود. موج در اثر وزش باد روی سطح اقیانوس بوجود می‌آید. در امواج اقیانوس انرژی خارق‌العاده‌ای وجود دارد. مجموع نیروی امواجی که خطوط ساحلی دنیا را در می‌نوردند، 2 تا 3 میلیون مگاوات تخمین زده می‌شود. سواحل غربی ایالات متحده و اروپا و سواحل ژاپن و نیوزلند محلهای مناسبی برای مهار انرژی امواج اقیانوسهستند. یکی از راههای مهار انرژی امواج این است که خط سد امواج را به کانالهای باریک کج کرده و در آنجا متمرکز کنیم. این کار باعث نیرو و اندازة امواج می‌شود. سپس امواج می‌توانند به ظرف‌هایی کانال کشی شده و یا مستقیماً برای گرداندن توربین‌ها به کار روند. هیچ دستگاه انرژی موجی تجاری بزرگی وجود ندارد، اما انواع کوچک آن موجود می‌باشند، مکانهای ساحلی کوچک بهترین وضعیت را آیندة نزدیک برای تولید انرژی موجی کافی برای جوامع محلی دارند.برای استفاده از انرژی امواج از سه طرح از انرژی آن بهره برداری می‌شود: استفاده از استوانه های شناور امواج متحرک اقیانوس دارای انرژی جنبشی است. از این انرژی می توان جهت چرخش یک توربین استفاده نمود. در تصویر، مثال ساده ای از این نوع انرژی را می بینید. همانطوریکه در تصویر نشان داده شده است ، موج درمحفظه به طرف بالا حرکت نموده و باعث خروج هوا از طرف دیگر آن می شود. سپس هوای متحرک باعث چرخش توربین شده و درنتیجه ژنراتور را به گردش در می آورد. زمانیکه موج پائین می رود ، جریان هوا از توربین عبور کرده و مجدداً از طریق درهایی ، که معمولاً بسته اند ، وارد محفظه می شود. این صرفاً یکی از سیستمهای تولید انرژی از موج است.استفاده از بادامکهای شناور وقتی موج می‌آید بادامکها را می‌چرخاند و این حرکت چرخشی را به ژنراتور وصل می‌کنند. در واقع تعداد زیادی از این بادامکها را توسط میله‌ای بهم وصل می‌کنند و مجموعه را در نزدیکی ساحل روی امواج می‌گذارند، این سیستمها برای امواج سنگین کاربرد دارد.استفاده از جزایر طبلک سیستم طبلکی: چیزی شبیه تیوپ اتومبیل می‌باشد که دیواره‌های آن قابل ارتجاع می‌باشد. قسمتهای داخلی تقسیم بندی ، توربین جاگذاری کرده‌اند. این سیستم را بصورت شناور روی آب می‌اندازند و موج به آنها ضربه وارد می‌کند. این ضربه به بدنه تیوپ ...

دیدگاه تاریخی:بحران نفت به خصوص پس از جنگ اعراب و اسراییل در ١٩٧٣ و بحران انرژی در اواخر قرن بیستم باعث افزایش قیمت نفت شد. بر این اساس استفاده از انرژی های تجدیدپذیر در اولویت قرار گرفت و کشورهایی که مرز آبی گسترده دارند به این فکر افتادند که از انرژی موج دریا برای تولید انرژی استفاده نمایند. برخی نیروگاه های آبی به صورت شناور روی آب هستند، برخی نیز در کنار ساحل انرژی آب را به برق تبدیل می کنند.استفاده از انرژی موجباد باعث به وجود آمدن موج می‏ گردد. توان انرژی موج در طول ١ کیلومتر ساحل حدود ٨٠ کیلووات می‏ باشد. مولدهای برق در طول ساحل می ‏توانند این انرژی را به انرژی الکتریکی تبدیل کنند. بازده چنین ژنراتورهایی حدود ٥٠% است، بنابراین یک نیروگاه موجی به طول ٢٥ کیلومتر، توانایی تولید ١٠٠٠ MW برق دارد. چنین نیروگاه هایی به صورت شناور ساخته می‏شوند تا بتوانند به راحتی با موج بالا و پایین بروند. این مولدها با هر بار نوسان می‏ توانند مقداری انرژی الکتریکی تولید نمایند.آیا بر اساس شکل زیر می توانید طرز کار مولد موجی را توضیح دهید؟مزایا:انرژی موج دریا از نوع تجدیدپذیر می ‏باشد. چنین منابعی نیازی به میلیون ها سال زمان برای به وجود آمدن ندارند و بی‏پایان می ‏باشند. تولید انرژی به این روش آلودگی در بر ندارد. این نیروگاه ها در طول زمستان می‏توانند بیشترین میزان انرژی را تولید کنند و خوشبختانه در چنین زمان هایی به انرژی بیشتری نیازمند هستیم. مولدهای کوچک موجی می ‏توانند در نواحی دور دست که انتقال برق مقرون به صرفه نیست به کار روند. مضرات:توان تولید شده در نیروگاه های موجی ثابت نبوده و بستگی به شرایط موج دریا دارد. هزینه ساخت ژنراتورهای موجی زیاد و ساخت آن ها دشوار است. کابلی که به وسیله آن مولدهای موجی به هم متصل می شوند برای قایق‏ها و کشتی ها مشکل آفرین می‏باشد. در ضمن انتقال برق از طریق کابل نیز خطرناک است زیرا ممکن است کابل لخت شده و جریان برق وارد آب شود و موجودات دریایی را به خطر اندازد. در ضمن این نیروگاه ها باید طوری ساخته شوند که در شرایط بد و طوفانی صدمه نبیند.موج چیست و چگونه به ‌وجود می ‌آید؟با شنیدن کلمه موج معانی مختلفی ممکن است به ذهن خطور کند. مثلاً در استادیوم فوتبال گاهی تماشاچیان به عنوان تشویق گروهی "موج مکزیکی می‌دهند" ! و با نظم خاصی در سر جای خود به بالا و پایین حرکت می ‌کنند.  گاهی در مسائل اجتماعی - سیاسی از موج سخن به میان می ‌آید. مثل "موج بنیادگرایی"البته در فیزیک، اصطلاح موج یک معنی خاص دارد.وقتی سنگی را بر روی سطح دریاچه یا استخر آب ...

 

 

 

 

انرژی امواج دریا> مقالهانرژی امواج دریا و منشأ آندریاها با فرایند های مختلف فیزیکی ، انرژی دریا را دریافت و ذخیره نموده و سپس آن راتلف می کنند. این انرژی به صورت امواج، جزر و مد، اختلاف دما و حتی اختلاف غلظت نمک در اعماق مختلف آب دریا وجوددارد که می توان از هر یک از آن ها بهره برداری کرد.منشا انرژی امواج دریا، بادهایی است که در حین وزیدن و تماس با سطح آب دریا، انرژی جنبشی خود را به دریا می دهند. آب دریا ، انرژی جنبشی باد را به صورت انرژی پتانسیل در خود ذخیره می کند و پس از مدت کوتاهی ان را به شکل انرژی جنبشی ( موج ) تبدیل می کند.میزان انرژی امواج دریا، به اهنگ انتقال انرژی باد به دریا بستگی دارد. به عبارت دیگر هر چه سرعت وزش باد بیش تر باشد، انرژی امواج دریا نیز بیش تر خواهد بود.بر اثر وزش طوفان های شدید در نواحی دور از ساحل و عمیق دریا، امواج پر انرژی به وجود می اید که در حین حرکت به طرف ساحل، انرژی خود را به آرامی از دست می دهند. به همین جهت، امواج دریا در نزدیکی ساحل، انرژی خود را هم از بادهای محلی ( که در نزدیکی ساحل می وزند ) و هم از طوفان های شدیدی که روزهای قبل در دوردست اتفاق افتاده اند، به دست می آورند.فکر استفاده از انرژی امواج دریا در طی قرن گذشته، برای بسیاری مطرح بوده است. ولی کوشش جدی برای بنیان گذاری یک فناوری موثر، از اواسط دهه ی 1970 شروع شد. از ان زمان تا کنون پژوهش هایی در بیش از 13 کشورجهان انجام شده، و دستگاهها و ماشین الات بسیاری ساخته شده اند.چگونگی مهار انرژی امواج دریا، عرصه ی مناسبی برای اختراع محسوب می شود. برای مثال در دوره ی 1974-1985 بیش از 200 دستگاه از این نوع فقط در انگلستان آزمایش شده اند.انرژی حاصل از امواج دریا اساسا غیر الاینده است و به هر میزان که بتوان آن ها را جایگزین سوخت های فسیلی کرد، منافع زیست محیطی فراهم می شود. تنها خطری که احتمال وقوع ان وجود دارد و جلوگیری از آن ضروری است، خطر برخورد قایق ها و کشتی ها با تاسیسات ایجاد شده است که با انتخاب صحیح محل های استقرار و همچنین به کارگیری وسایل و علائم ناوبری، قابل پیشگیری است.منبع: دانشنامه رشد

 

 

انرژی امواج دریا و منشأ آندریاها با فرایند های مختلف فیزیکی ، انرژی دریا را دریافت و ذخیره نموده و سپس آن راتلف می کنند. این انرژی به صورت امواج، جزر و مد، اختلاف دما و حتی اختلاف غلظت نمک در اعماق مختلف آب دریا وجوددارد که می توان از هر یک از آن ها بهره برداری کرد.منشا انرژی امواج دریا، بادهایی است که در حین وزیدن و تماس با سطح آب دریا، انرژی جنبشی خود را به دریا می دهند. آب دریا ، انرژی جنبشی باد را به صورت انرژی پتانسیل در خود ذخیره می کند و پس از مدت کوتاهی ان را به شکل انرژی جنبشی ( موج ) تبدیل می کند.میزان انرژی امواج دریا، به اهنگ انتقال انرژی باد به دریا بستگی دارد. به عبارت دیگر هر چه سرعت وزش باد بیش تر باشد، انرژی امواج دریا نیز بیش تر خواهد بود.بر اثر وزش طوفان های شدید در نواحی دور از ساحل و عمیق دریا، امواج پر انرژی به وجود می اید که در حین حرکت به طرف ساحل، انرژی خود را به آرامی از دست می دهند. به همین جهت، امواج دریا در نزدیکی ساحل، انرژی خود را هم از بادهای محلی ( که در نزدیکی ساحل می وزند ) و هم از طوفان های شدیدی که روزهای قبل در دوردست اتفاق افتاده اند، به دست می آورند.فکر استفاده از انرژی امواج دریا در طی قرن گذشته، برای بسیاری مطرح بوده است. ولی کوشش جدی برای بنیان گذاری یک فناوری موثر، از اواسط دهه ی 1970 شروع شد. از ان زمان تا کنون پژوهش هایی در بیش از 13 کشورجهان انجام شده، و دستگاهها و ماشین الات بسیاری ساخته شده اند.چگونگی مهار انرژی امواج دریا، عرصه ی مناسبی برای اختراع محسوب می شود. برای مثال در دوره ی 1974-1985 بیش از 200 دستگاه از این نوع فقط در انگلستان آزمایش شده اند.انرژی حاصل از امواج دریا اساسا غیر الاینده است و به هر میزان که بتوان آن ها را جایگزین سوخت های فسیلی کرد، منافع زیست محیطی فراهم می شود. تنها خطری که احتمال وقوع ان وجود دارد و جلوگیری از آن ضروری است، خطر برخورد قایق ها و کشتی ها با تاسیسات ایجاد شده است که با انتخاب صحیح محل های استقرار و همچنین به کارگیری وسایل و علائم ناوبری، قابل پیشگیری است.

 فرض میکنیم قطر پیستون پمپ برابر  ۱.۲ متر باشد.بنابر این سطخ مقطع پیستون برابر میشود با s=3.14r 2  که برابر میشود با ۱.۱m2 حال  قرار دارد. این جزیره دارای ۱۷ کیلومتر مربع مساحت است و نام اصلی و پارسی آن «راز» می‌باشد که به دلیل نزدیکی با مناطق عربنشین حاشیه جنوبی خلیج فارس، اعراب از معادل عربی این نام یعنی سری استفاده کردند که این نام در زبان‌های اروپایی سیری تلفظ شد و از راه آن زبان‌ها به فارسی رسید. جغرافیا جزیره سیری یکی از نقاط دیدنی استان هرمزگان در جنوب ایران است. این جزیره در آب‌های خلیج فارس قرار دارد. فاصله آن تا مرکز شهرستان ابوموسی که در قسمت شرقی جزیره سیری واقع شده در حدود ۲۷ کیلومتر است . فاصله دریایی آن تا مرکز استان هرمزگان شهر بندر عباس در حدود ۱۵۲ مایل دریایی است . وسعت جزیره سیری ۳/۱۷ کیلومتر مربع می‌باشد. این جزیره فاقد پستی و بلندی بوده و نسبتاً مسطح است. مرتفع‌ترین نقطه آن ۲۴ متر از سطح دریا ارتفاع دارد و بزرگ‌ترین ابعاد طولی و عرضی جزیره ۱/۶ و ۶/۴ کیلومتر است. در قسمت‌های شمالی و نزدیک سواحل جزیره مناطق مسکونی همراه با سایر تأسیسات جای گرفته‌اند این جزیره کاملا نظامی است و هیچ فرد بومی در آن زندگی نمی‌کند و همچنین عده‌ای از مردم جزیره در تأسیسات نفتی کار می‌کنند. در این جزیره تعداد قابل توجهی نخل خرما به طور پراکنده وجود دارد. این منطقه پوشش گیاهی فقیری دارد. در این جزره معدن خاک سرخ نیز موجود است. در گذشته افرادی بومی در این جزیره زندگی می‌کردند که به مرور زمان از آنجا کوچ کردند. بر سر این جزیره، ایران سالها با کشورهای حوزه خلیج فارس مشکل داشته است، اما اکنون از جزیره‌های ایران است. از حیوانات این جزیره می‌توان از آهو، گربه و مرغ دریایی و ... نام برد. آب و هوای این جزیره گرم و شرجی است. بررسی روش های استفاده از انرژی


دانلود با لینک مستقیم


پاورپوینت-ppt- انرژی جریان های جزر و مد آب- در 32 اسلاید-powerpoint