دانلود با لینک مستقیم و پر سرعت .
لینک پرداخت و دانلود *پایین مطلب*
فرمت فایل:Word (قابل ویرایش و آماده پرینت)
تعداد صفحه137
بخشی از فهرست مطالب
فصل اول مقدمه 1-1- اهمیت کنترل موتور القایی
موتورهای القایی از نظر هزینه و سادگی ساخت نسبت به انواع دیگر موتورها برتری دارند و به طور وسیع در صنعت مورد استفاده قرار گرفتهاند. از این رو کنترل این نوع موتورها از اهمیت خاصی برخوردار است. اما با وجود سادگی ساختار ماشین القایی کنترل دور و موقعیت آنها برای داشتن سرعت و گشتاور دلخواه، پیچیده تر از سایر موتورها در صنعت میباشد]3[.
1-2- محرکه های با کارایی بالا در کنترل موتورهای القایی
در سال 1986 که ایده روش کنترل مستقیم گشتاور[1](DTC) اولین بار توسط Takashi مطرح شد و نیز در طی آن تا سال 1996 که اولین درایو DTC توسط شرکت ABB به بازار عرضه شد، روش کنترل برداری تنها روش کارآمد و کاربردی با پاسخ دینامیکی گشتاور مناسب و مورد استفاده در صنعت بود ]1[. یکی از مشکلات اصلی کنترل برداری علاوه بر زیاد بودن حجم محاسبات به دلیل تبدیلات متوالی و پیچیده برای از بین بردن کوپلاژ بین محورها و ساده شدن روابط شار و گشتاور، نیاز به استفاده از سنسور دقیق به منظور پیدا کردن موقعیت شار روتور است، که در کاربردهای ارزان قیمت صرف هزینه برای سنسور قابل قبول نیست و درصورت استفاده از روش کنترل برداری بدون سنسور، که هم اکنون تحقیق و بررسی بر روی این روشها ادامه دارد، منجر به افزایش پیچیدگی و حجم محاسباتی بسیار زیاد و استفاده از DSPهای پرقدرت و گران قیمت میشود. به طور کلی، محرکههای موتورهای القایی مبتنی بر کنترل گشتاور برای استفاده در کاربردهای با کارایی بالا، دو نوع هستند:
- محرکه های مبتنی بر کنترل جهت دار بردار ([2]FOC)
- محرکه های مبتنی بر کنترل مستقیم گشتاور (DTC)
شکل 1-1- دسته بندی انواع روشهای کنترل موتور القایی
1-3- کنترل برداری موتور القایی
با ظهور محرکههای مبتنی بر کنترل برداری که در حدود 30 سال پیش توسط محققان آلمانی معرفی و ارایه گردید، کنترل موتورهای جریان متناوب، با ایجاد کانالهای مستقل کنترل شار و گشتاور، مشابه کنترل موتورهای جریان مستقیم شد. در یک سیستم کنترل برداری نیاز به داشتن پارامترهای دقیق ماشین امری ضروری است و هرگونه عدم هماهنگی بین پارامترهای موتور و پارامترهای مورد استفاده در محاسبات سیستم کنترل برداری موجب اختلال در کار سیستم میشود. با فرض ثابت بودن موقعیت زاویه ای شار روتور نسبت به قاب مرجع گردان، فازور جریان استاتور به دو مؤلفه همسو با شار روتور وعمود بر آن تجزیه میشود. مؤلفه همسو با شار، جریان تولید کننده میدان و مؤلفه عمود بر آن، جریان تولید کننده گشتاور است. تجزیه جریان استاتور نیازمند اطلاع از موقعیت شار روتور است. این زاویه شار میتواند مستقیماً در روش کنترل برداری مستقیم اندازه گیری شود یا در روش کنترل برداری غیر مستقیم محاسبه شود. عدم نیاز به سنسورهای زاویه شار و امکان کار در سرعتهای پایین، کنترل برداری غیر مستقیم را در مقایسه با کنترل برداری مستقیم کاربردی تر کرده است. عمده ترین مشکلی که در این نوع کنترل وجود دارد تغییر پارامترهای ماشین در شرایط کاری است .با توجه به اینکه در طراحی سیستم کنترل برداری از پارامترهای ثابت موتور استفاده میشود، ولی در عمل به خاطر شرایط کاری و تغییر دما و عامل اشباع مغناطیسی هسته، این پارامترها دچار تغییر میشوند و این باعث عدم هماهنگی بین پارامترهای موتور و پارامترهای مورد استفاده در محاسبات سیستم کنترل برداری شده و موجب اختلال در کار سیستم میشود]1و2[.
1-4- کنترل مستقیم گشتاور
مطالعات و تحقیقات بعدی برای دستیابی به روشهای نوین دیگر برای کنترل موتور القایی منجر به ارائه و معرفی روش کنترل مستقیم گشتاور(DTC) توسط محققان ژاپنی و آلمانی، و در اواسط دهة 80 میلادی روشهای نوینی در کنترل موتور القایی پایه گذاری شد. در این زمان M.Depenbrok روش کنترل خودکار مستقیم [3]( DSC ) و Takahasi و Noguchi روش کنترل مستقیم گشتاور ) DTC ( را معرفی کردند. در حال حاضر از روش کنترل مستقیم گشتاور، برای کاربردرهای قدرت پایین و متوسط ، بیشتر استفاده میشود. در مقابل از روش کنترل خودکار مستقیم به دلیل پایین بودن فرکانس کلید زنی و کمتر بودن مشکل کموتاسیون کلید ها در جریان دهی بالا، در کاربردهای قدرت بالا، نظیر سیستمهای کششی ریلی استفاده میشود]1و2[.
یکی از مزیتهای اصلی DTC نسبت به کنترل برداری عدم نیاز به تبدیلات پیچیده مختصات و عدم نیاز به سنسور دقیق موقعیت است. که در قبال این سادگی مشکلاتی اساسی نظیر ضربان گشتاور زیاد و فرکانس کلید زنی متغییر و جریان راه اندازی بالا در روش DTC پایه وجود دارد. این تفاوت از آنجا حاصل میشود که در DTC پایه، کنترل شار و گشتاور به طور مستقیم توسط انتخاب چندین بردار ولتاژ استاتور محدود صورت میگیرد. در حالی که در کنترل برداری از جریانهای استاتور در محورهای d,q برای کنترل شار و گشتاور، با انتخاب بردارهای ولتاژ دلخواه تولید شده، کنترل موتور صورت میگیرد.