فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

حسگر تصویر

اختصاصی از فی توو حسگر تصویر دانلود با لینک مستقیم و پر سرعت .

حسگر تصویر


حسگر تصویر

حسگر تصویر

 

استفاده از حسگر تصویر CCD FXA 1012 :

1-         کلیات این سند حاوی اطلاعات اولیه برای کاربردهای دوربین برای حسگر 

FXA 1012 است، مدار مشروح در این یادداشت هنوز برای تولید انبوه کم هزینه بهینه سازی نشده است. 

2-         حسگر FXA 1012 

1-2- طراحی گیت فیزیکی:

برای درک بهتر از عمل حسگر و الگوهای پالس مورد استفاده یک بازنگری شماتیک از گیت های تصویر مقاطع ذخیره سازی و قرائت FXA 1012 در شکل 1 نشان داده شده است.

 

2-2- خروجی: FXA 1012 دارای یک بافر خروجی پی گیرنده منبع 3 مرحله ای است که در شکل 2 نشان داده می شود. بار به دیفوزیون شناور (FD) از زیر گیت آخر (به طور متوالی) (CL) انتقال داده می شود. FD ناحیه n از یک دیود بایاس شده معکوس به Psub(Ps) با یک ظرفیت کاپاسیتانس خیلی کم است که بار را به یک نوسان ولتاژ تبدیل می‌کند. نوسان ولتاژ بر روی FD از طریق یک سری تقویت کننده های پی گیرنده منیع SF1 , SF2 , SF3 به گره خروجی منتقل می شود. CS1 و CS2 بارهای منبع جریان بر روی تراشه برای SF1 و SF2 می باشند. کشانه پی گیرنده منبع (SFD)  منبع مثبت بافر خروجی است. منبع پی گیرنده منبع (SFS) منبع منفی است که به زمین آنالوگ وصل می شود. پس از آشکار سازی گره FD دوباره تنظیم می شود. (از الکترون های سیگنال خالی می شود) که توسط به کار بردن پالس تنظیم مجدد برای دروازه تنظیم مجدد (RG) این کار صورت می گیرد، بنابراین پتانسیل FD برای ولتاژ کشانه تنظیم مجدد تنظیم می شود جریان در داخل SF3 عرض باند تقویت کننده را تعیین می‌کند. یک بار   3.3 اجازه خوانده شدن MHz 21 را می دهد.

 

3-         عملیات حسگر FXA 1012- به برگه اطلاعات برای جزئیات درباره تعداد دقیق خطوط و اجزای تصویری در هر خط مراجعه کنید.

1-3- گیت های: تصویر (A) دروازه های و ذخیره (B) به صورت ساختارهای چهار فاز طراحی می شوند که با ساعت های چهار حالتی راه اندازی می شود. دروازه های تصویر A2 …….A1 طراحی می شوند. فازهای 1 و 2 در طی یکپارچه سازی بار بالا هستند. (دروازه های A) با زمان ذخیره (گیت های B) نوسان ساعت نمونه از ov است 13V است. ساعت های سریال به صورت یک ساختار چهار فاز طراحی می شوند اما می توانند به صورت «شبکه دوفاز» طراحی شوند. C1 و C3 ساعت های مکمل هستند NS6….S C4,C2 پس از C1¬ و C3.تاخیر دارند، این امر تولید پالس را ساده می‌کند و تغذیه ساعت را بر روی سیگنال خروجی در طی زمان های «گرفتن» و «نمونه» به حداقل می رساند. در طی انتقال ذخیره به سریال دورازه های C1¬ و C2 باید «بالاتر» باشند در حالی که C3 و C4 «پائین» باقی می مانند. نوسان ساعت از 0 الی 5 است ولت برای C1¬ و C2 روی 2.5 ولت الی 3.5 ولت برای C2 و C4 است.

 

word: نوع فایل

سایز:24.3 KB 

تعداد صفحه:16


دانلود با لینک مستقیم


حسگر تصویر

تحقیق درباره تصویر دیجیتال

اختصاصی از فی توو تحقیق درباره تصویر دیجیتال دانلود با لینک مستقیم و پر سرعت .

تحقیق درباره تصویر دیجیتال


تحقیق درباره تصویر دیجیتال

فرمت فایل:  Image result for word ( قابلیت ویرایش و آماده چاپ

حجم فایل:  (در قسمت پایین صفحه درج شده )

تعداد صفحات فایل: 130

کد محصول : 001Shop

فروشگاه کتاب : مرجع فایل 


 

 قسمتی از محتوای متن 

 

 1-1 : مقدمه

 

پردازش تصویر دیجیتال[1] دانش جدیدی است که سابقه آن به پس از اختراع رایانه های دیجیتال باز می گردد . با این حال این علم نوپا در چند دهه اخیر از هر دو جنبه نظری و عملی پیشرفت های چشمگیری داشته است . سرعت این پیشرفت به اندازه ای بوده است که هم اکنون و پس از این مدت نسبتاً کوتاه ، به راحتی می توان رد پای پردازش تصویر دیجیتال را در بسیاری از علوم و صنایع مشاهده نمود . علاقه به روش های پردازش تصویر دیجیتال از دو محدوده کاربردی اصلی نشات می گیرد که آن محدوده ها عبارتند از : بهبود اطلاعات تصویری به منظور تعبیر انسانی و پردازش داده های صحنه برای ادراک ماشینی مستقل .

 

چند دسته مهم از کاربرد های پردازش تصویر به شرح زیر می باشد [ 1 ] :

 

الف ) کاربردهای عکاسی مانند ارتقاء ، بازسازی تصاویر قدیمی ، بازسازی تصاویر خراب شده با نویز و بهبود ظاهر تصاویر معمولی.

 

ب ) کاربرد های پزشکی مانند ارتقاء ویژگی های تصاویر اشعه ایکس ، تولید تصاویر MRI  و

 

CT-scan.

 

ج ) کاربرد های امنیتی مانند تشخیص حرکت ( در دزد گیر ها ) ، تشخیص اثر انگشت ، تشخیص چهره و تشخیص امضاء.

 

د ) کاربرد های نظامی مانند تشخیص و رهگیری خودکار اهداف متحرک یا ثابت از هوا یا از زمین.

 

ه ) کاربرد های سنجش از راه دور مانند ارتقاء و تحلیل تصاویر هوایی و ماهواره ای (برداشته شده از مناطق مختلف جغرافیایی) که در کاربرد های نقشه برداری ، کشاورزی ، هوا شناسی و موارد دیگر مفید هستند .

 

و ) کاربرد های صنعتی مرتبط با خودکار سازی صنایع مانند تفکیک محصولات مختلف بر اساس شکل یا اندازه ، آشکارسازی نواقص و شکستگی های موجود در محصولات ، تعیین محل اشیاء و اجرای فرایند تولید با استفاده از روبات ها و بینایی ماشینی .

 

ز ) کاربرد های فشرده سازی تصویر مانند ذخیره سازی ، ارسال تصاویر تلویزیون با کیفیت بالا و ارسال تصاویر متحرک و زنده از روی شبکه اینترنت و یا خط تلفن.

 

ح ) موارد متفرقه دیگری نیز مانند تصویر برداری از اسناد و ارسال آنها توسط دور نگار و تشخیص خودکار نویسه در ردیف کاربرد های پردازش تصویر قرار دارند.

 

 

 

 1-2 : مراحل اساسی پردازش تصویر

 

پردازش تصویر دیجیتال محدوده وسیعی از سخت افزار ، نرم افراز و مبانی نظری را در بر می گیرد . در این قسمت مراحل اساسی مورد نیاز برای اجرای یک پردازش روی تصویر را نام می بریم که در شکل 1-1 نمایش داده شده است .

 

 

 

 

 

شکل 1-1 : مراحل اساسی پردازش تصویر دیجیتال

 

 

 

مرحله اول این فرایند ، تصویر برداری[2] - یعنی به دست آوردن تصویر دیجیتال -  است . انجام دادن چنین کاری نیازمند یک حسگر تصویر بردار[3] و قابلیت دیجیتال سازی سیگنال خروجی حسگر می باشد . پس از اینکه تصویر دیجیتال به دست آمد ، مرحله بعدی پیش پردازش آن است . وظیفه اصلی پیش پردازش ، بهبود تصویر به روش هایی است که امکان توفیق سایر پردازش ها را نیز افزایش دهد . پیش پردازش ، به طور معمول به روش هایی برای ارتقاء تمایز ، حذف نویز و جداسازی آن نواحی که زمینه شان نشان دهنده احتمال وجود اطلاعات حرفی   عددی است ، می پردازد . مرحله بعدی به بخش بندی[4] می پردازد . در تعریف وسیع ، بخش بندی فرایندی است که تصویر ورودی را به قسمت ها یا اجزای تشکیل دهنده اش تقسیم می کند . به طور کلی بخش بندی یکی از مشکل ترین کارها در پردازش تصویر دیجیتال است . از طرفی یک شیوه قوی بخش بندی ، تا حد زیادی فرایند را به حل موفق مساله نزدیک می کند . از طرف دیگر الگوریتم های ضعیف یا خطا دار بخش بندی ، تقریباً  همیشه باعث خرابی اتفاقی [5]می شوند . خروجی مرحله بخش بندی معمولاً ، داده های پیکسلی خام است که یا مرز یک ناحیه یا تمام نقاط درون آن ناحیه را تشکیل می دهند . در هر دو حالت باید داده ها را به شکل مناسب برای پردازش رایانه ای تبدیل نمود . اولین تصمیمی که باید گرفته شود این است که آیا داده ها باید به صورت مرز یا به صورت یک ناحیه کامل نمایش داده شود . نمایش مرزی وقتی مفید است که مشخصات  خارجی شکل نظیر گوشه ها یا خمیدگی ها مورد نظر باشد . نمایش ناحیه ای وقتی مفید است که خواص درونی بخش های تصویر نظیر بافت یا استخوان بندی شکل مورد توجه باشد . در هر حال در بعضی کاربرد ها هر دو نمایش به کار می رود . انتخاب یک روش نمایش ، تنها قسمتی از راه تبدیل داده های خام به شکل مناسب برای پردازش بعدی رایانه ای است . توصیف[6] ، که انتخاب ویژگی[7] نیز خوانده می شود ، به استخراج ویژگی هایی که مقداری از اطلاعات کمی مورد نظر را به ما می دهند یا برای تشخیص گروهی از اشیاء از گروه دیگر ، اساسی هستنند ، می پردازد . مرحله آخر شکل 1-1 شامل تشخیص و تعبیر است . تشخیص[8] فرایندی است که بر اساس اطلاعات حاصل از توصیف گرها یک برچسب را به یک شی منتسب می کند . تعبیر[9] شامل انتساب معنا به یک مجموعه از اشیاء تشخیص داده شده است . دانش به شکل پایگاه داده دانش[10] در درون سامانه پردازش تصویر ، ذخیره می شود . این دانش ممکن است ، تنها دانستن محل نواحی دارای جزئیات مورد علاقه باشد . بنابراین جستجوی مورد نیاز برای آن اطلاعات محدود می شود . پایگاه دانش ممکن است کاملاً پیچیده باشد ، نظیر فهرست به هم مرتبط تمام نقایص اصلی ممکن در یک مساله بازرسی مواد یا یک پایگاه داده تصویری که حاوی تصاویر ماهواره ای تفکیک بالا از یک منطقه در ارتباط با کاربرد های آشکارسازی تغییر[11] باشد . پایگاه دانش علاوه بر هدایت عمل هر واحد پردازش ، بر تعامل بین واحد ها نیز نظارت می کند . این نمودار نشان می دهد که ارتباط بین واحد های پردازش اغلب براساس دانش قبلی در مورد نتیجه پردازش است . این پایگاه دانش نه تنها عمل هر واحد را هدایت می کند ، بلکه به عملیات بازخورد[12] بین واحد ها نیز کمک می کند [1].

 

 

 

   1-3 : یک مدل ساده تصویر

 

عبارت تصویر به تابع دو بعدی شدت نور که به صورت  نوشته می شود ، اشاره دارد که مقدار یا دامنه در مختصات مکانی  ، شدت روشنایی تصویر در آن نقطه می باشد . چون نور صورتی از انرژی است ،  باید بزرگتر از صفر و متناهی باشد ، یعنی

 

 

 

تصاویر دریافتی در فعالیت های روزانه معمولاً نور منعکس شده از اشیا است . طبیعت پایه ای   را می توان با دو عامل مشخص نمود : (1) مقدار نور تابشی از منبع روی صحنه ای که دیده می شود و (2) مقدار نور منعکس شده به وسیله اشیاء صحنه .

 

این دو عامل به ترتیب مولفه های روشنائی و انعکاس[13] نامیده می شوند و به ترتیب با  و

 

  نشان داده می شوند . توابع  و  به شکل حاصل ضرب ترکیب می شوند تا    ایجاد شود :

 

 

 

 که

 

 

 

و

 

 

 

معادله بیان می کند که ضریب انعکاس به بازه عددی صفر (جذب کامل) و یک (انعکاس کامل) محدود می شود . طبیعت  توسط منبع نور و  نیز توسط مشخصات اشیای صحنه معین می شود .

 

 شدت تصویر تکرنگ   در مختصات  را سطح خاکستری  تصویر در آن نقطه می نامیم .

 

 

 

 

 

 

 

بازه  محدوده خاکستری نامیده می شود . معمولاً تلاش می شود که این بازه را به بازه  که در آن  بیانگر سیاه و   بیانگر سفید است ، تغییر دهیم . تمام مقادیر میانی سایه های خاکستری هستند که به طور پیوسته از سیاه تا سفید تغییر می کنند[1] .

 

 

 

  4-1: تشخیص صورت

 

یکی از مهم ترین کاربرد های پردازش تصویر دیجیتال در زمینه ی تشخیص صورت است . تشخیص صورت ، محبوبیت و اهمیت زیادی را در جامعه بصری کامپیوتری[14] بدست آورده است . با حضور همزمان تکنولوژی اطلاعاتی جدید و رسانه های گروهی ، روش های موثر تر و آشنا تری برای برهم کنش های انسان کامپیوتر[15] (HSI) توسعه داده می شوند ، واسط های انسان کامپیوتر که بر مبنای حالات چهره و حرکات بدن انسان می باشند ، به عنوان روش هایی مورد استفاده قرار گرفته اند که جایگزین واسط های سنتی از قبیل صفحه کلید ،‌ ماوس و نمایشگر ها شده اند . تحقیقات در حال گسترش در ارتباط با پردازش صورت بر این اساس هستند که اطلاعاتی درباره هویت ، موقعیت و مقصود یک کاربر از تصاویر قابل استخراج باشند و متعاقباً کامپیوتر متناظر هم بتواند واکنش نشان دهد . تلاش های صورت گرفته در پردازش صورت ، شامل شناسایی صیورت ، ردیابی صورت ، شناسایی حالت چهره ، تصدیق صورت و تشخیص صورت می باشد . برای ساختن سیستم های خودکاری که اطلاعات قرار کرفته در تصاویر صورت را آنالیز کنند ، الگوریتم های موثر و قدرتمندی از تشخیص صورت مورد نیاز است . با داشتن یک تصویر مجزا ،‌ هدف تشخیص صورت ، تعیین تمام نواحی صورت است که شامل صورت می باشند ، با صرف نظر کردن از وضعیت سه بعدی تصویر ، جهت و شرایط روشنایی آن . در سالهای اخیر فعالیت های بسیاری در زمینه ی شناسایی و تشخیص صورت انجام گرفته است . کاربردهای نظارتی و کنترلی و تجاری بسیاری در حوزه این فعالیت ها ،‌توسعه داده شده اند . تکنیک های بیشماری برای تشخیصی صورت در تصاویر مجزا پیشنهاد شده اند . این روش ها به دو دسته کلی تر مبتنی بر ویژگی و تصویر تقسیم بندی شده اند . که هر یک مزایا و معایب خاص خود را دارند . از بین این روش ها ، روش مبتنی بر رنگ و شبکه ی عصبی و ماشین بردار حمایتی (SVM)  ، رایج تر هستند و کارایی آنها به مراتب بیشتر از سایر روش هاست . تکنیک های مبتنی بر رنگ اغلب خیلی مطمئن هستند ،‌ اما ممکن است که منجر به تشخیص های غلط بی شماری شوند ، در نتیجه نیاز به آن دارند که با سایر روش ها ترکیت شوند . شیوه های شبکه ی عصبی و ماشین بردار حمایتی که مبتنی بر الگوریتم های یادگیری و رده بندی هستند عمدتاً شامل پارامتر های بی شماری هستند که نیار به تنظیم دارند که مسلماً این عملیات وقت گیر است . با داشتن یک تصویر دلخواه به عنوان ورودی ، که می تواند از ویدئو و یا یک عکس بی جانی ، ‌حاصل آمده باشد ، هدف تشخیص صورت ، تعیین این مساله است که آیا صورتی در تصویر وجود دارد یا خیر ، و اگر وجود داردموقعیت و محدوده ی هر صورت را برمی گرداند . فعالیت هایی که در زمینه ی تشخیص صورت ، انجام گرفته به اوایل سال 1970 بر می گردد . هر چند برای بیشتر از بیست سال است که این امر توسط مهندسان و روانشناسان مورد مطالعه ی جدی قرار گرفته است ،‌و مخصوصاً از سال 1995 ، روش های بسیاری در تلاش برای حل این مسئله ، توسعه داده شده اند . در حقیقت ما تصاویری را که فقط حاوی قورت باشد را دریافت نمی کنیم . به سیستمی نیاز هست که صورت ها را در تصاویر درهم ، تشخیصی ،‌تعیین موقعیت و جدا کند و در نتیجه ی آن ، این صورت های جداسازی شده می توانند به عنوان ورودی به سیستم های تشخیص [16]چهره تحویل داده شوند . عمل تشخیص صورت برای مغز بشری ، یک عمل جزئی و کم اهمیت است ، در حالی که هنوز چالش ها و مشکلات سختی را برای آنکه کامپیوتر قادر به انجام تشخیص صورت ،‌ باشد باقی گذاشته است . چالش هایی که با تشخیص صورت مرتبط هستند را در موارد زیر خلاصه می کنیم :

 

  • وضع [17]صورت : تصاویر یک صورت متناظر با وضعیت های مختلف قرار گیری دوربین صورت ، همچون روبرو ، تمام رخ ، 45 درجه ، وارون و .... تغییر می کنند . کل این وضعیت ها را به بالا ، پایین و عادی تقسیم می کنیم که قرار گیری صورت نسبت به محور مستقیم دوربین را نشان می دهند .
  • وجود یا عدم وجود مولفه های ساختاری[18]: مولفه های اضافی مرتبط با صورت همچون سبیل ، ریش ، کلاه و عینک هستند که ممکن است وجود داشته باشند یا نداشته باشند . این مولفه ها در صورت وجود تغییرات زیادی را موجب می شوند .
  • حالات چهره [19] : ظاهر صورت مستقیماً متاثر از حالات چهره ی اشخاص است .
  • انسداد[20] یا همپوشانی : صورت ها ممکن است به طور جزئی توسط اشیاء دیگر از جمله صورت دیگر یا کلاه و ... پوشیده شده باشند .

 

 

  متن کامل را می توانید بعد از پرداخت آنلاین ، آنی دانلود نمائید، چون فقط تکه هایی از متن به صورت نمونه در این صفحه درج شده است.

پس از پرداخت، لینک دانلود را دریافت می کنید و ۱ لینک هم برای ایمیل شما به صورت اتوماتیک ارسال خواهد شد.

 
/images/spilit.png

« پشتیبانی مرجع فایل »

همچنان شما میتوانید قبل از خرید، با پشتیبانی فروشگاه در ارتباط باشید، یا فایل مورد نظرخود را  با تخفیف اخذ نمایید.

ایمیل :  Marjafile.ir@gmail.com 

 پشتیبانی فروشگاه :  پشتیبانی مرجع فایل دات آی آر 

پشتیبانی تلگرام  و خرید

پشتیبانی ربات فروشگاه : 

به زودی ...

/images/spilit.png

دانلود با لینک مستقیم


تحقیق درباره تصویر دیجیتال

بررسی بیشتر آفساید 13 ص به همراه تصویر

اختصاصی از فی توو بررسی بیشتر آفساید 13 ص به همراه تصویر دانلود با لینک مستقیم و پر سرعت .

بررسی بیشتر آفساید 13 ص به همراه تصویر


بررسی بیشتر آفساید   13 ص به همراه تصویر

قوانین فوتبال - آفساید - توضیحات تصویری

 

یک مهاجم (A) در موقعیت آفساید قرار گرفته است. این بازیکن با حریف درگیر نشده تا در بازی او دخالت کند، اما توپ را لمس می کند تا در بازی مداخله داشته باشد.
کمک داور موظف است تا به محض اینکه مهاجم توپ را لمس کرد، پرچم خود را به نشانه آفساید بالا برد.

 

 

یک مهاجم (A) در موقعیت آفساید قرار گرفته است. این بازیکن با حریف درگیر نشده تا در بازی او دخالت کند، او همچنین توپ را لمس نمی کند.
پس آفساید نیست. چنانچه توپ داخل دروازه قرار گیرد گل محسوب میشود.

 




دانلود با لینک مستقیم


بررسی بیشتر آفساید 13 ص به همراه تصویر

پروژه کاربرد پردازش تصویر چندطیفی در پوست شناسی. doc

اختصاصی از فی توو پروژه کاربرد پردازش تصویر چندطیفی در پوست شناسی. doc دانلود با لینک مستقیم و پر سرعت .

پروژه کاربرد پردازش تصویر چندطیفی در پوست شناسی. doc


پروژه کاربرد پردازش تصویر چندطیفی  در پوست شناسی. doc

 

 

 

 

نوع فایل: word

قابل ویرایش 110 صفحه

 

چکیده:

علم پردازش تصویر درچند دهه اخیر از هر دو جنبه نظری و عملی پیشرفتهای چشم گیری داشته است سرعا این پیشرفت به اندازه ای بوده است که هم اکنون ، به راحتی میتوان رد پای پردازش تصویر را در بسیاری از علوم و صنایع مشاهده نمود.

 

مقدمه:

پردازش تصویر چیست؟

ازسال 1164 تا کنون موضوع پردازش تصویر رشد فراوانی کرده است علاوه بر برنامه تحقیقاتی فضایی اکنون از فنون پردازش تصویر در موارد متعددی استفاده می شود گرچه اغلب مطالب با هم نا مرتبط هستند اما عموما نیازمند روشهایی هستند که قادربه ارتقاء اطلاعات تصویری برای تعبیر وتحلیل انسان باشد.برای نمونه در پزشکی با شیوه های کنتراست تصویر را ارتقاء میدهندیا اینکه برای تعبیرآسانترتصاویر اشعه ایکس یاسایرتصاویر پزشکی سطوح شدت روشنایی را نگاه رمز می کنند.

متخصصان جغرافیایی نیز از این روشها یا روشهای مشابه برای مطالعه الگوها هوایی که باتصویر برداری هوایی و ماهواره ای به دست آمده است استفاده می کنند.در باستان شناسی نیز روشهای پردازش تصویر برای باز یابی عکسهای مات شده ای که تنها باقی مانده آثار هنری نادر هستند مورد استفاده قرار میگیرد در فیزیک و زمینه های مرتبط فنون رایانه ای بارها تصاویر ازمایشات مربوط به موضوعاتی نظیر پلاسماهای پر انرژی وتصاویر ریز بین الکتریکی را ارتقاء داده اند. در اوایل دهه 60 سفینه فضایی رنجر 7متعلق به ناسا شروع به ارسال تصاویر تلویزیونی مبهمی از سطح ماه به زمین کرد.استخراج جزئیات تصاویر برای یافتن محلی برای فرود سفینه آپولو نیازمند اعمال تصمیماتی روی تصاویر بود. این کار مهم به عهده لابراتور jpl  قرار داده شد بدین ترتیب زمینه تخصصی پردازش تصاویر رقومی اغاز شد و مثل تمام تکنولوژیهای دیکر سریعااستفاده های متعدد پیدا کرد.

در معنای خاص پردازش تصویر عبارت است از هر نوع پردازش سیگنال که ورودی یک تصویر است مثل عکس یا صفحه ای از یک فیلم .خروجی هم میتواند یک تصویر یا یک مجموعه ای از نشان های ویژه یا متغیرهای مربوط به تصویر باشد.

یک تصویر از لحظه وررود به سیستم پردازش تصویر تا تولید تصویر خروجی به ترتیب مراحل زیر را طی میکند:

 

فهرست مطالب:

چکیده

فصل اول

پردازش تصویر چیست

1-1دریافت تصویر ورودی

1-2:پیش پردازش تصویر(پردازش سطح پایین)

1-3پردازش تصویر (پردازش سطح میانی)

1-4 آنالیز تصاویر(پردازش تصاویر)

1-5 تصاویر دیجیتالی

1-6تکنیکهای پردازش تصویر

1-6-1ترمیم تصاویر

1-6-2 میانگیری از تصاویر

1-6-3عملیات فیلتیرینگ

1-7:هیستوگرام تصویر

1-7-1تعدیل هیستوگرام

1-8 عملیات تشخیص لبه و بخش بندی تصاویر

فصل دوم

مقدمه پوست شناسایی

فصل سوم

تعریف مسئله

فصل چهارم

تکنیک ها و سامانه ی تصویر برداری از پوست

  1. 1 خصوصیات فیزیکی پوست معمولی
  2. 1.1 ساختارهای پوستی
  3. 1.1.1 Epidermis
  4. 1.1.2Dermis
  5. 1.1.3 چربی زیر پوستی
  6. 2 تصویربرداری پوست
  7. 2.1 پوست نگاری
  8. 2.2.1 اصول نظری
  9. 1.1.2 تکنیک
  10. 1.1.3 ابزارهای پوست نگاری
  11. 2.2 تحلیل تصویر و تشخیص به کمک رایانه
  12. 2.3 تصویربرداری چند طیفی
  13. 2.4 فراصوت(سونوگرافی)
  14. 2.4.1 اصول نظری
  15. 2.4.2 مزایا و معایب
  16. 2.5 توموگرافی بهم پیوسته نوری (OCT)
  17. 2.5.1 اصول نظری
  18. 2.5.3 مزایا و معایب
  19. 2.6 تصویربرداری تشدید مغناطیسی
  20. 2.6.1 اصول نظری
  21. 2.6.3 مزایا و معایب
  22. 2.7 میکروسکوپ لیزری هم کانون
  23. 3.7.1 اصول نظری
  24. 2.7.3 مزایا و معایب
  25. 2.8 مقایسه همه تکنیک ها
  26. 3 ابزارهای بر پایه ی تکنیک های مختلف تصویربرداری
  27. 3.1 ابزارهای بر پایه ی درموسکوپی
  28. 2.2 ابزارهای بر پایه ی توموگرافی بهم پیوسته ی هم کانون
  29. 3.3 ابزارهای بر پایه ی تصویربرداری فراصوت
  30. 3.4 ابزارهای بر پایه ی تصویربرداری چند طیفی
  31. 4 بحث در مورد ابزارهای تصویربرداری چند طیفی

فصل پنجم

توصیف سامانه ی Asclepios

  1. 1 اصول نظری سامانه ی تصویربرداری
  2. 2 عکسبرداری
  3. 3 پردازش تصاویر در دو مرحله:
  4. 3.1 بازسازی طیفی
  5. 4 مدل طیفی عکسبرداری
  6. 5 الگوریتم بازسازی منحنی طیفی
  7. 3.2 پردازش طیف بازسازی شده (رویکرد صفحه به صفحه)

فصل ششم: تکنیک های قطعه بندی پوست

  1. 2 مروری بر شیوه های قطعه بندی
  2. 2.1 ردیابی دستی
  3. 2.2 آستانه گیری
  4. 2.3 تشخیص لبه
  5. 2.4 شیوه های وابسته به منطقه:
  6. 2.4.1 رشد منطقه
  7. 2.4.2 افزار و ادغام
  8. 3 پارامترهای قطعه بندی برای مدلسازی پوست
  9. 3.1 فضاهای رنگ مورد استفاده برای مدلسازی رنگ
  10. 3.3.RGB
  11. 3.1.2RGB بهنجار
  12. 3.1.3 طیف ، اشباع و شدت رنگ
  13. 3.4.1 YCbCr
  14. 3.2 رویکرد مدل پایه
  15. 3.3 رویکرد چندطیفی

فصل هفتم

روش شناسی قطعه بندی پوست

  1. 1 عکسبرداری
  2. 2 اصلاحات نرم افزاری
  3. 3 قطعه بندی تصویر
  4. 3.1 رشد کردن منطقه
  5. 3.2 آستانه گیری
  6. 4 مراحل الگوریتم
  7. 4.1 پنجره بندی : مرحله اول
  8. 4.2 ایجاد بذر : مرحله دوم
  9. 4.3 ایجاد TRG : مرحله سوم
  10. 4.3.1 گراف بازتاب آستانه (TRG)
  11. 4.4 برازش چند جمله ای : مرحله چهارم
  12. 4.5 محاسبه ی آستانه : مرحله ی پنجم
  13. 4.6 رشد دادن منطقه: مرحله ششم

فصل هشتم

نتایج

  1. 1 گراف بازتاب آستانه
  2. 1.1 مقدار آستانه بین TH1
  3. 1.2 مقدار آستانه در M'
  4. 1.3 مقدار آستانه در TH2
  5. 1.4 مقدار آستانه در TH3
  6. 1.5 مقدار آستانه در M''
  7. 2 نتایج قطعه بندی در زمینه ی تصویر تک رنگ
  8. 3 نتایج قطعه بندی در تصاویر تک رنگ نویزدار
  9. 4 نتایج قطعه بندی بر روی تصاویر RGB
  10. 5 نتایج قطعه بندی حجم طیفی بازسازی شده

فصل نهم

  1. 1نرم افزار episcan

 

فهرست اشکال:

شکل 1 : ساختارهای درونی پوست

شکل 2: نمایش قاعده ABCD (تصاویر با استفاده ازدرموسکوپ گرفته شده اند)

شکل 3: اپتیک درموسکوپ نور انکساریافته آسیب را هنگامی که از میان آن می گذردو به

صورت یک الگوی متمایز در می آورد، روشن می سازد.  

شکل 4: برنامه ی رایانه ای که قابلیت اجرای قطعه بندی آسیب را دارد

شکل 5: اصول نظری توموگرافی بهم پیوسته نوری

شکل 6: میکروسکوپی تشدید مغناطیسی ملانومای بدخیم (A) و بافت شناسی مربوطه (B

شکل 7: اصول نظری میروسکوپی لیزری هم کانون

شکل8. نمودار شماتیک  SpectroShade

شکل10: محدوده طول موج هر فیلتر

شکل 11: نمودار شماتیک سامانه Asclepios  

شکل13: حجم داده های چند طیفی بازسازی شده برای هر پیکسل

شکل14: شماتیک فرایند بازسازی از مجموعه همه ی تصاویر

  شکل 15) الف – تصویر اصلی؛ ب کنتراست تصویر 

شکل 16 : الف- منحنی TRG؛ 2- برازش چند جمله ای 'p' و خط مماس 't' از میان نقطه ی F منحنی

شکل 17: الف-تصویر اصلی؛ 2- نگاشت منطقه ای تصویر؛ 3- تصویر دودویی؛ 4- آشکارسازی مرزهای تصویر دودوی68

شکل 18: الف-درمنحنی TRG در 610 نانومتر؛ ب- نتیجه قطعه بندی در 'A' ؛ ج-نتیجه قطعه بندی درM' ؛ د- نتیجه

 قطعه بندی  در TH2؛  ه- نتیجه قطعه بندی در TH3 ؛ و- نتیجه قطعه بندی در M''.  

شکل 19: نتایج قطعه بندی در طول موج های مختلف درتصاویر تک رنگ

شکل 20: نتایج قطعه بندی در تصاویر نوبز دار در طول موج های الف- 430 نانومتر؛ ب- 490 نانومتر؛ ج- 550

نانومتر؛ د- 910 نانومتر   

شکل 21: الف- تصویر اصلی؛ ب- منحنی TRG تصویر درخشندگی؛ ج- نتایج قطعه بندی در 'A'؛ د- نتایج قطعه بندی

در F؛ ه- نتایج قطعه بندی در TH2؛  و- نتایج قطعه بندی در TH3 

شکل 22: نتایج قطعه بندی بر روی پارامتر درخشندگی در تصاویر مختلف RGB 

شکل 23: نتایج قطعه بندی با بکارگیری حجم طیفی بر روی تصاویر مختلف درون محدوده ی 400 تا1000 نانومتر

 

فهرست جداول :

جدول 1: ابزارهای پوست نگاری 

جدول2: ابزارهای بر پایه ی رویکرد تصویربرداری چند طیفی

 

منابع و مأخذ:

 [1] Diane M. Thiboutot , “Dermatological Applications of High-Frequency Ultrasound “, Section of Dermatology, The Pennsylvania State University College of Medicine, Hershey, PA 17033

[2] M. Marias, R. Jurkonis”Review on skin lesion imaging, analysis and automatic classification “, Biomedical Engineering Institute, Kaunas University of Technology

[3] Schuco International , Dealer Catalogue , 3rd sept 2007

[4] K. C. Miscall, Uday Choker , “Dermoscope”,Department of Dermatology, Seth GSMedical College & KEM Hospital, Parel, Mumbai - 400012, India .

[5] Ashfaq A. Marghoob, md,a,_ lucinda d. Swindle, md,a,_ claudia z. M. Moricz,”instruments and new technologies for the in vivo diagnosis of melanoma”, j am acad dermatol november 2003, New york

[6] Monika-Hildegard Schmid-Wendtner, MD; Walter Burgdorf, MD ,“ Ultrasound Scanning In Dermatology”,Arch Dermatol. 2005;141:217-224.

[8] Robert W. Coatney, “Ultrasound Imaging: Principles and Applications in Rodent Research”, Department of Laboratory Animal Sciences, GlaxoSmithKline, King of Prussia,Pennsylvania.

[9] S. Camilla, M. Daniela , C. Alessio , S. Marcello, C. Pietro, F. Paolo and C. Paolo, “Application of optical coherence tomography in non-invasive characterization of skin vascular lesions” , Department of Dermatology, University of Florence,and Department of Human Pathology and Oncology, University of Florence, Florence, Italy 68 References

[10] F.M. Hendriks , “chanical Behaviour of Human Skin in Vivo , Nat.Lab, July 2001

[11] Moganty R Rajeswari, Aklank Jain, Ashok Sharma, Dinesh Singh, N R Jagannathan,Uma Sharma and M N Degaonkar, “Evaluation of Skin Tumors by Magnetic Resonance Imaging

[12] “Safety Guidelines for Conducting Magnetic Resonance Imaging (MRI) Experiments Involving Human Subjects Center for Functional Magnetic Resonance Imaging”, University of California, san Diego , July 2007

[13] “A Primer on Medical Device Interactions with Magnetic Resonance Imaging Systems” , CDRH Magnetic Resonance Working Group, February 7, 1997.

[14] Misri Rachita, Pande Sushil, Khopkar Uday, ‘Confocal laser microscope’, Department of Dermatology, Sent GS Medical College and KEM Hospital, Parel, Mumbai

[15] Nana Rezai, “Confocal Microscopy - A Visual Slice of the Cellular world”, The science creative Quarterly

[16] http://www.fotofinder.de/en/dermoscopy.html

[17] http://www.isis-optronics.de/en/skindex/produkte/content.html

[18] Episcan® I-200 Dermal Ultrasound Scanner www.mediluxprofessional.net

[19] M. Moncrieff, S.Cotton, E.Claridge and P. Hall, Spectrophotometric IntracutaneousAnalysis: a new technique for imaging pigmented skin lesions”, British Journal of Dermatology 2002; 146: 448–457.

[20] http://www.astronclinica.com/technology/siascopy-explained.htm

[21] http://www.eosciences.com.

[22] “Spectrophotometric analysis of skin lesions”, DermNet NZ, Dec 2007

[23] P. Hans, A. Guiseppe ,H. Rainer and Robert H. Johr,“Color Atlas of Melanocytic Lesions of the Skin”, septembre 2007

[24] http://www.lucid-tech.com/medical-imagers/vivascope-1500.asp

[25] P.wilhelm , B. Enzo, E. Peter, I. Maibach, “Bio Engineering of Skin: Skin Imaging and References 69 Analysis”, Dermatology: Basic science series.

[26] M Lualdi, A Colombo, M Carrara, L Scienza, S Tomatisand R Marchesini, “Optical Devices Used For Image Analysis Of Pigmented Skin Lesions: A Proposal For Quality Assurance Protocol Using Tissue-Like Phantoms”, Institute Of Physics , Publishing, 15 November 2006

[27] Mansouri et al ,”Neural Networks in Two Cascade Algorithms for Spectral Reflectance Reconstruction” , Le2i, UMR CNRS 5158, UFR Sc. & Tech., University of Burgundy

[28] Brian Gerard Johnston, “Three-Dimensional Multispectral Stochastic Image Segmentation” Memorial University Of Newfoundland, Cabot Institute Of Technology, January 1994

[29] Vladimir V, Vassili .S, Alla A, “A Survey on Pixel-Based Skin Color Detection Techniques”, Graphics and Media Laboratory ,Moscow State University,Moscow, Russia.

[30] Harald Ganster*, A. Pinz, R. Röhrer, E . Wildling,M. Binder, And H. Kittler, “Correspondence Automated Melanoma Recognition” , IEEE Transactions On Medical Imaging, Vol. 20, No. 3, March 2001

[31] Y. Won Lim and S. Uk Lee , “On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques “ , Department of Control and Instrumentation Engineering, Seoul National University, February 1989.

[32] Ph. Schmid and S. Fischer, “Colour Segmentation For The Analysis Of Pigmented Skin Lesions” Signal Processing Laboratory, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland

[33] Z. She, P.J.Fish and A.W.G.Duller, “ Simulation Of Optical Skin Lesion Images” , University of Wales, Bangor, Conexant Digital Infotainment, Castlegate, Tower Hill, Bristol, , U.K.

[34] S. E. Umbaugh,R H. Moss,W.V. Stoecker,G A. Hance, “Automatic Color Segmentation Algorithms With Application to Skin Tumor feature Identification”, IEEE Engineering In Medicine And Biology, September 1993.

[35] G. A. Hand, S. E. Umbaugh,R H. Moss, and W Y. Stoec, “ Un supervised Color Image Segmentation, with application to skin tumour boarder”, IEEE Engineering In Medicine And Biology, January/February 1996

[36] J.Der Lee and Yu-Lin Hsiao , “Extraction of Tumor Region in Color Images Using Wavelets” , Chang Gung University , Taiwan January 2000 ,An International Journalcomputers & mathematics with applications 70

[37] A., J. Round, A. W. G. Duller and P. .J. Fish , “ Colour Segmentation For Lesion Classification”, IEEE/EMBS Oct. 30 - Nov. 2, 1997 Chicago, IL. USA

[38] F. Tomaz, T. Candeias and H. Shahbazkia, “Fast and accurate skin segmentation in color Images”, Proceedings of the First Canadian Conference on Computer and Robot Vision(CRV’04) .

[39] KeKe Shang, Liu Ying, Niu Hai-jing and Liu Yu-fu,” Method of Reducing Dimensions of Segmentation Feature parameter Applied to Skin Erythema Image Segmentation”,Proceedings of the 2005 IEEEEngineering in Medicine and Biology 27th Annual

Conference Shanghai, China, September 1-4, 2005

[40] L. Xua, M. Jackowski, A. Goshtasby, D. Roseman, S. Bines, C. Yu, A. Dhawan, A. Huntley, “ Segmentation of skin cancer images” , Image and Vision Computing 17 (1999) 65–74.

[41] Galda H, Murao H, Tamaki H and Kitamura S , “ Skin Image Segmentation Using a Self Organizing Map and Genetic Algorithms” , Transactions of the Institute of Electrical Engineers of Japan. 2003.

[42] Alberto A, Luis T And, Edward J. D, “An Unsupervised Color Image SegmentationAlgorithm For Face Detection Applications”, Politechnic University Of Valencia,Politechnic University Of Catalonia, Spain .

[43] Stefano T et al “Automated Melanoma Detection With A Novel Multispectral Imaging System: Results Of A Prospective Study” ,Institute Of Physics Publishing Physics In Medicine And Biology, 30 March 2005

[44] Mauro C et al, “Automated Segmentation Of Pigmented Skin Lesions In Multispectral Imaging “ , Institute Of Physics Publishing Physics In Medicine And Biology Phys. Med.

 [45] J Ruiz-Del-Solar And Rodrigo Verschae , Robust SkinSegmentation Using Neighborhood Information,Dept. Of Electrical Engineering, Universidad De Chile, Santiago, Chile

[46] Oana G. Cula Kristin J. Dana, “Image-based Skin Analysis” , CS Department ECE Department, Rutgers University, Texture 2002 - 1 and 2 June 2002, Copenhagen (co-located with ECCV 2002.

[47] Dhawan AP, Sicsu A , “Segmentation of images of skin lesions using color and texture information of surface pigmentation”, Department of Electrical and Computer Engineering,University of Cincinnati, OH 45221.

[48] Liangen Zhu, Shiyin Qin, and Fugen Zhou ,”Skin image segmentation based on energy transformation” , Journal of Biomedical Optics -- March 2004 -- Volume 9, Issue 2, pp. 362-366

[49] S Lam Phung, A Bouzerdoum And D Chai,” Skin Segmentation Using Color Pixel Classification: Analysis And Comparison”, IEEE Transactions On Pattern Analysis And Machine Intelligence, Vol. 27, No. 1, January 2005

[50] P. Gejgus, J. Placek and M. Sperka, “Skin color segmentation method based on mixture of Gaussians and its application in Learning System for Finger Alphabet”, International Conference on Computer Systems and Technologies - CompSysTech’2004

[51] F. Gasparini, R. Schettini , “,Skin segmentation using multiple thresholding” Universita degli Studi di Milano bicocca, Milano Italy

[52] Ilias Maglogiannis, “Automated Segmentation and Registration of Dermatological Images”, Journal of Mathematical Modelling and Algorithms 2: 277–294, 2003.

[53] Jianbo G, Jun Z, Matthew G. Fleming, Ilya P, A B. Cognetta , “Segmentation of dermatoscopic Images by Stabilized Inverse Diffusion Equations”, 1998 IEEE

[54] Yasuaki H, Yoshiaki Y, Shingo S, Masayuki M, Tomoko S,Violeta D M, Masahiro Y, Shuichi M, Takeshi Y, Tsutomu A, “Automatic characterization and segmentation of human skin using three- imensional optical coherence tomography”, Optical Society of America, 2006

[55] Yuchun Fang Tieniu Tan, “A Novel Adaptive Colour Segmentation Algorithm and Its Application to Skin Detection, National Laboratory of Pattern Recognition (NLPR), Institute of Automation, Chinese Academy of Sciences, China .

[56] Stefano Tomatis et al, “Automated melanoma detection with a novel multispectral imaging system: results of a prospective study” Institute Of Physics Publishing, 30 March 2005

[57] B Farina et al,” Multispectral imaging approach in the diagnosis of cutaneous melanoma: potentiality and limits”, Phys. Med. Biol. 45 (2000) 1243–1254, January 2000.

References (continued)

Liffers A, Vogt M, Ermert H. In vivo biomicroscopy of the skin with high-resolution magnetic resonanc imaging and high frequency ultrasound. Biomed Tech (Berl). 2003 May: 48(5): 130-4

Lopez H, Beer JZ, Miller SA, Zmudzka BZ. Ultrasound measurements of skin thickness after

UV exposure: feasibility study. J Photochem Photobiol B. 2004 Feb 20; 73(3) 123-32

Loudon, JK, Cagle PE, Dyson, M. High frequency ultrasound: an overview of potential uses in physical therapy. Physical Therapy Reviews 2005; 10:209- 215.

Karim A, Young SR, Lynch JA, Dyson M. A Novel Method of Assessing Skin Ultrasound Scans. Wounds. 1994; 6(1), 9-15

Mirpuri N.G., Dyson M., Rymer J., Bolton P.A., Young S.R. High-frequency ultrasound imaging of the skin during normal and hypertensive pregnancies. Skin Research and echnology 2001; 7: 65-69.

Mogensen S., Hertig J. Stopping Pressure Ulcers - Before They Start. Nursing Homes agazine. 2004; Vol 53, No. 5

Overgaard OL, Takimaki H, Serup J. Highfrequency ultrasound characterization of normal skin. Skin thickness and echographic density of 22 anatomical sites. Skin Res Technol. 1995; 1, 74-80

Peer S., Bodner G., Meirer R., Willeit J., Piza- Katzer, H. Examination of Postoperative Peripheral Nerve Lesions with High-Resolution Sonography. American Journal of Roentgenology.2001 Feb; 177: 415-419.

Raju BI, Swindells KJ, Gonzalez S, Srinivasan MA. Quantitative ultrasonic methods for characterization of skin lesions in vivo. Ultrasound Med Biol.2003 Jun; 29(6):825-38

Rippon M.G., Springett K., Walmsley R., Patrick K., Millson S. Ultrasound assessment of skin and wound tissue: comparison with histology. Skin Research and Technology 1998; 4: 147-154.

Salcido R, Donofrio JC, Fisher SB, LeGrand EK, Dickey K, Carney JM, Schosser R, Liang R.

Histopathology of pressure ulcers as a result of sequential computer-controlled pressure sessions in a fuzzy rat model. Adv Wound Care 1994 Sep; 7(5):23-4, 26, 28 passium Salcido, R. Advances in Skin & Wound Care. 2000 Mar.

  1. woundcarenet.com/advances/articles/00marap redit.htm Sanby-Moller J, Wulf HC. Ultrasonographicsubepidermal low-echogenic band, dependence of age and body site. Skin Res Technolo. 2004 Feb;10 (1):57-63 Schou A.J., Thompsen K., Plomgaard A.M.,

Wolthers O.D. Methodological aspects of highfrequency ultrasound of skin in children. Skin

Research and Technology. 2004 August; 10 (3): 200.

Seidenari S, Pagnoni A, DiNardo A, et al Echographic evaluation with image analysis of

normal skin variations according to age and sex. Skin Pharmacol. 1994; 7(4): 201-9

Serup J., Keiding J., Fullerton A., Gniadecka M.,Gniadecka R. High Frequency Ultrasound

Examination of Skin: Introduction and Guide. Ch. 12.1: 239-354.

Vogt M, Knuttel A, Hoffman K, Altmeyer P, Ermert H. Comparison of high frequency ultrasound and optical coherence tomography as modalities for high resolution and non invasive skin imaging. Biomed Tech (Berl). 2003 May; 48(5):116-21

Whiston R.J., Young S.R., Lynch J.A., Harding K.G., Dyson, M. Application of high frequency ultrasound to the objective assessment of healing wounds. Wounds. 1993

Whiston RJ, Melhuish J, Harding KG. High Resolution Ultrasound Imaging in Wound Healing. Wounds. 1993; A Compendium of Clinical Research and Practice; 116-121

Yang Y, Jia C, Cherry GW, Fu X, Li J. Long-term mortality of ultrasound structure in patients with venous leg ulcers-healed from one week to twenty years. Chin Med J (Engl).2002 Dec; 115(12):1819- 23

Zhou Y., Stuart Foster F., Nieman B.J., Davidson L.,Josette Chen L., Mark enkelmanR.Comprehensive transthoracic cardiac imaging inmice using ultrasound biomicroscopy withanatomical confirmation by magnetic resonanceimaging. Physiol Genomics. 2004 April; 18: 232-244.

© 2006 Longport International Ltd.


دانلود با لینک مستقیم


پروژه کاربرد پردازش تصویر چندطیفی در پوست شناسی. doc