فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

فی توو

مرجع دانلود فایل ,تحقیق , پروژه , پایان نامه , فایل فلش گوشی

دانلود مقاله مدل صف M/M/1 با سرویس دهی دروازه ای به ترتیب تصادفی -صنایع

اختصاصی از فی توو دانلود مقاله مدل صف M/M/1 با سرویس دهی دروازه ای به ترتیب تصادفی -صنایع دانلود با لینک مستقیم و پر سرعت .

 

 

 

 

چکیده :
در این تحقیق به تحلیل یک مدل صف M/M/1 با سرویس دهی دروازه ای به ترتیب تصادفی خواهیم پرداخت. در این نوع سرویس دهی یک اتاق انتظار و یک صف سرویس برای مشتریان وجود دارد. هرگاه صف سرویس خالی شود تمامی مشتریان منتظر در اتاق، فوراً و بصورت تصادفی در صف سرویس قرار می گیرند.
خواهیم دید که تعداد مشتریان در اتاق انتظار و صف سرویس دارای توزیع پیوسته ثابت هستند.بنابراین می توان تبدیل دو متغیره Laplace –Stieltjes را از توزیع پیوسته زمانهای اقامت مشتریان در اتاق انتظار و صف سرویس بدست آورد.

 

1. مقدمه :
ما در این مقاله به بررسی مدل صف M/M/1 با سرویس دهی دروازه ای به ترتیب تصادفی می پردازیم. در این نوع سرویس دهی ، مشتریان در یک اتاق انتظار، بدون ترتیب، جمع می شوند تا به محض آنکه صف خالی شد بصورت تصادفی در صف قرار می گیرند.
این مدل موقعیت مخابره با دسترسی چندگانه در شبکه های کابلی را به یاد می آورد. شبکه های کابلی هم اکنون به منظور نقل وانتقال اطلاعات بصورت دوطرفه ارتقاء داده شده اند. سیستم با اضافه کردن یک کانال پیشرفته به کانال قدیمی که در حال حاضر وجود دارد، گسترش یافته است. بسیاری از ایستگاهها از این کانال پیشرفته بصورت مشترک استفاده می کنند به گونه ای که برای انتقال اطلاعات نیاز به جداسازی محتویات وجود دارد. یک راه مؤثر برای انتقال اطلاعات از طریق کانال پیشرفته استفاده از مکانیزم request–grant می باشد. هر ایستگاه باید از طریق انشعابات محتویات با سایر ایستگاهها هماهنگی اطلاعات داشته باشد. بعد از آنکه تقاضا بصورت موفقیت آمیز برآورده شد،جریا ن داده ها به شیارهای ذخیره شده می روند که این محتویات برای هر ایستگاه به صورت جداگانه می باشد.
دو نوع مکانیزم جداسازی محتوا در انشعابات محتویات وجود دارد : دسترسی بصورت آزاد و دسترسی بصورت بلاک شده . ویژگیهای اساسی نوع دسترسی بلاک شده عبارتند از :
• تقاضاهای در حال رقابت در یک انشعاب، بصورت تصادفی(بدون ترتیب) انشعاب را ترک می کنند.
• اگر تقاضاهای جدید به هنگامی برسندکه تقاضایی درحال ارسال می باشد باید صبر کند تا انشعاب حاضر آزاد گردد.
همین دو ویژگی منجر شده است که ما به مطالعه مدل صف با سرویس دهی دروازه ای که ترتیب سرویس دهی آن تصادفی است، بپردازیم. در اینجا مشتریان در صف بیان کننده تقاضاهایی هستند که در حال حاضر در یک انشعاب در حال رقابت هستند.
اخیراً کاربردی از این مدل بوسیله BOXMA در کتاب DENTENEER and RESING به منظور تسهیل تعمیرات در مدل تعمیر ماشین آلات که نحوه سرویس دهی آن بدون ترتیب می باشد، مورد مطالعه قرار گرفته است. در این کتاب تقریبی برای واریانس زمان اقامت در محل تعمیر با فرض اینکه منابع، محدود هستند ، بدست آمده است.
برای بدست آوردن توزیع زمانهای اقامت مشتری در اتاق انتظار و صف سرویس ابتدا به بررسی فرآیند مارکوف دو متغیره می پردازیم.سپس با بکارگیری یک روش تصحیح برای مسئله صفی که توسط ADAN ارئه شده است درمی یابیم که این فرآیند مارکوف دوبعدی دارای توزیع ثابت می باشد.
پیش از این ALI و NEUTS (1984) یک مدل صف با دو مرحله انتظار را مورد مطالعه قرار داده بودند. تفاوت اساسی بین مدلهای ALI و NEUTS ، BOXMA و COHENو مدل ذکر شده در اینجا آنست که مدت زمان انتقال مشتری از اتاق انتظار به صف سرویس(T) در مدلهای فوق الذکر بزرگتر از صفر می باشد در حالیکه در مدل ما این مدت زمان صفر می باشد. بنابراین این ویژگی که مشتریان بعد از انتقال بصورت تصادفی در صف سرویس قرار می گیرند در مدلهای ALI و NEUTS ، BOXMA وCOHEN وجود ندارد.
در ادامه مقاله روش تشریح شده در بالا دنبال شده است. در بخش 2 جزئیات مدل تحت بررسی مورد تشریح خواهد شد. بعد از آن در بخش 3 اثبات خواهیم کرد که تعداد مشتریان در اتاق انتظار و صف سرویس دارای توزیع پیوسته ثابت می باشد. در بخش 4 یک نتیجه جانبی از اینکه تعداد مشتریان در اتاق انتظار توزیع ثابت دارند (با فرض اینکه تعدادکل مشتریان در اتاق انتظار و صف سرویس برابر N باشد) را خواهیم دید. نهایتاً در بخش 5 به ارائه نتایج حاصل از توزیع پیوسته ثابت زمانهای اقامت مشتریان در اتاق انتظار و صف سرویس، می پردازیم.

 

2. شرح مدل :
مشتریان بصورت فرآیند پواسون با نرخ λ وارد سیستمی می شوندکه یک سرور دارد. مدت زمان سرویس مشتریان از توزیع نمایی با پارامتر µ پیروی می کند. فرض می کنیم که 1 > µ/λ = ρ . مکان انتظار قبل از سرویس دهی شامل دو بخش می باشد : یک اتاق که مشتریان بدون ترتیب در آن منتظر می باشند و یک صف سرویس که مشتریان بترتیب در آن قرار دارند.مشتری در بدو ورود وارد اتاق انتظار می شود. هر زمان صف سرویس خالی شود، همه مشتریان حاضر در اتاق انتظار فوراً از اتاق انتظار به صف سرویس منتقل می شوند. آنها بترتیب تصادفی در این صف قرار می گیرند و براساس ترتیب قرار گیری آنها در صف، سرویس دهی به آنها صورت می گیرد. اگر در لحظه ای که صف سرویس خالی می شود هیچ مشتری در اتاق انتظار وجود نداشته باشد، سرور صبر می کند تا مشتری بعدی برسد. پس از آن فوراً این مشتری به صف سرویس منتقل شده و سرویس دهی به آن آغاز می گردد.
به عبارت دیگر صف سرویس نمی تواند خالی باشد مگر آنکه اتاق انتظار خالی باشد.در حقیقت نحوه سرویس دهی در این روش به این صورت است که ابتدا مشتریان در پشت یک در و در اتاق انتظار صبر می کنند و بعد از آن بصورت تصادفی در یک صف بترتیب قرار می گیرند.این روش به نام « سرویس دهی دروازه ای با ترتیب تصادفی » خوانده می شود.
تعداد مشتریان در اتاق انتظار در زمان t بوسیله X1(t) و تعداد مشتریان در صف سرویس ( که شامل مشتری در حال سرویس می باشد) در زمان t بوسیله X2(t)نمایش داده می شود. واضح است که فرآیند تصادفی
{(X1(t), X2(t)) : t ≥ 0} یک فرآیند مارکوف دوبعدی می باشد. بخش بعدی به محاسبه احتمالات حالت ثابت این فرآیند مارکوف اختصاص داده شده است.

خاطر نشان می شود که زوج دوتایی (X1, X2) متغیرهای تصادفی هستند که دارای توزیع پیوسته بوده و بوسیله احتمالات(k,n) π معین می شوند. همچنین X1+ X2دارای همان توزیع در یک صف معمولی M/M/1 با تعداد مشتری ثابت و نحوه سرویس دهی FCFS می باشد. به عبارت دیگر :

 

3. احتمالات حالت ثابت ((k,n) π ) :
معادلات مربوط به احتمالات حالت ثابت در زیر آورده شده اند :

 

قضیه بعدی بیان می کند که احتمالات (k,n) π بوسیله مجموع نامتناهی از ترکیبات حاصلضرب بدست می آید.
قضیه 1 : توزیع احتمال منحصربفردی که معادلات بالا را توسط آن می توان حل کرد عبارت است از :

که در آن :


و همچنین داریم :

 

اثبات قضیه 1 : با توجه به رابطه (1 ) واضح است که : ρ0,0)=1 – ) π . علاوه براین با جایگذاری رابطه (2) در رابطه (3) داریم :

 

از آنجائیکه ما به دنبال محاسبه احتمالات (k,n) π , k≥0 , n≥1 و برآورده ساختن روابط (4) و (5) و(8) هستیم باید داشته باشیم :

به منظور بدست آوردن این احتمالات از یک روش تصحیح برای مسئله صف طرح شده توسط ADAN در سال 1991 استفاده می کنیم. در این روش سعی می شود که معادلات بوسیله یک ترکیب خطی از عباراتی که در هم ضرب شده اند، حل شوند. به منظور تحقق این امر ابتدا باید ترکیباتی(راه حلی) که رابطه (5) را برآورده می سازند، تعیین گردند . سپس از این راه حل برای ساخت یک ترکیب خطی که رابطه (4) را برآورده می سازد استفاده کرد.
این ترکیبات شامل عوامل غیر قابل شمارش بسیاری هستند. بنابراین برای انتخاب عوامل مناسب نیاز به یک دستورالعمل داریم. این دستورالعمل بر پایه منطق تصحیح می باشد : بعد از مشخص شدن اولین مورد ، عوامل دیگری به منظور تصحیح خطاهای ایجاد شده در معادلات اضافه می شوند. در نهایت ملاحظه می کنید که روابط (4) و (5) برآورده می شوند و در نتیجه معادله (8) هم به صورت اتوماتیک برقرار خواهد شد زیرا که این معادلات به هم وابسته اند.
با توجه به مطالب فوق الذکر ما ابتدا در به دنبال حلی بشکل n-1β kα برای برآورده سازی رابطه (5) به ازای تمامی مقادیرk و n هستیم. با جایگزینی این عبارت در (5) و مخرج مشترک گرفتن :

از آنجائیکه مجبور هستیم جواب معادله را به نرمال تبدیل کنیم باید 1 > |α| و 1 > |β| باشند. نقاط در کنار منحنی شکل (10) که به صورت یک ناحیه پیوسته می باشند در حقیقت عبارات جواب معادله (5) هستند.
سپس یک ترکیب خطی از این عبارات حاصلضربی که در رابطه (4) صدق می کنند ، می سازیم. ما با عبارت ابتداییc1α1kβ1n-1 که در آن 0 = 1β و 0 = α1 و )= ρ/(ρ+1)1β g( = α1 و c1یک مقدار ثابت است .
رابطه (4) را می توان بصورت زیر نوشت :

 

اگر عبارت c1α1kβ1n-1 را در معادله (4) قرار دهیم داریم : c1α1n = 0
بنابراین عبارت c1α1kβ1n-1 نمی تواند معادله(4) را برآورده سازد و برای تصحیح این خطا باید عبارت دومی را به معادله اضافه کنیم به طوری که در سمت چپ مقدار c1α1n بدست آید. این بدان معناست که ما باید عبارت
c2α2kβ2n-1 متناظر با زوج(β , α ) بر منحنی (10) اضافه کنیم به طوری که به ازای همه مقادیر n≥2 داشته باشیم :

که از آن می توان نتیجه گرفت :

البته بوسیله اضافه کردن عبارت c2α2kβ2n-1 عبارت اضافی c2α2n را در سمت راست معادله (11) خواهیم داشت. بنابراین عبارت سوم c3α3kβ3k را برای تصحیح این خطا اضافه می کنیم. به صورت مشابه نتایج زیر حاصل می شود :

با ادامه دادن این روش عبارت اضافی cmαmkβmk را که در آن αm و βm و cm همانند روابط پیشین بصورت زیر تعیین می گردند، اضافه می گردد :

حال اگر ما بتوانیم ثابت کنیم که :
الف) هنگامی که →m عبارت خطای cmαmn به سمت صفر میل می کند.
ب)سری همگراست و

هردو معادله (4) و (5) برآورده خواهند شد.(الف) و (ب) بصورت مستقیم با توجه به عبارات زیر حاصل می شوند :

نهایتاً مقدار ثابت c1 از معادله (9) بدست می آید :

در اثبات قضیه ذکر شده باید نکات زیر را مدنظر قرار داد.
نکته اول : انتخاب مقدار اولیه= 0 1β بسیار مهم است.برای مثال اگر عبارت اولیه c1α1kβ1n-1 به شرطρ > 1β> 0
ما تمایل نداریم که فقط عبارت c1α1n را در سمت راست و همچنین عبارت1β1k d را سمت چپ بدست آوریم.
ا ز طرفی دیگر نمی خواهیم که مجبور باشیم یک عبارت را برای تصحیح خطای c1α1n و یک عبارت دیگر را برای تصحیح خطای 1β1k d به معادله اضافه کنیم. با ادامه دادن این روش به یک جمع ناهمگرا (واگرا) دست

 

خواهیم یافت، مگر آنکه به بازای مقادیری از m داشته باشیم : (g○…○g) = β1
نکته دوم : در قضیه 1 برای j > 0 داریم :


نکته سوم : با توجه به قضیه 1 توزیع حاشیه ای X1 و X2 بصورت زیر می باشد :
و

نکته چهارم : قضیه 1 را می توان بوسیله استفاده از توابع مولد نیز اثبات کرد. اگر قرار دهیم :

از رابطه (4) ، (5) و (8) داریم :

اگر قرار دهیم :

و با جایگزینی y = f(x) در رابطه (12) ، سمت چپ آن برابر صفر می شود. با استفاده از Q(x,y) به شرط اینکه |x|≤1 , |y|≤1 می توانیم نتیجه بگیریم که به ازای y=f(x) سمت راست (12) نیز برابر صفر می باشد و بنابراین :

با تکرار این تساوی می توان یک عبارت که بصورت مجموع نامتناهی می باشد را برای Q(x,y) بدست آورد. بعد از جایگزینی این عبارت در (12) و استفاده از نتایج قضیه 1 می توان یک عبارت مشخص را برای Q(x,y) تعیین کرد.

 

4. تفکیک بین مشتریان اتاق انتظار و صف سرویس :
در قضیه 1 بخش قبلی احتمالات حالت ثابت (k,n) π را بصورت مجموع نامتناهی از عبارات ضربی بدست آوردیم. با وجود اینکه اگر ρ به یک نزدیک نباشد این عبارات همگرا هستند اما اگر کسی بخواهد به طور مثال مقادیر(0,100) π ،(50,50) π و(99,1) π را بررسی کند این مجموع نامتناهی سودمند نخواهند بود. در این بخش از نتایج بخش قبلی برای آگاهی بیشتر از نحوه تفکیک بین مشتریان اتاق انتظار و صف سرویس هنگامی که تعداد کل مشتریان زیاد باشد، استفاده می کنیم . فرمولهایی را بدست می آوریم که به ازای مقادیر نزدیک به یک ρ همگراست.
این فرمولها دارای رفتار نوسانی جالب توجهی هستند که به ازای مقادیر کوچک ρ نمایانگر می باشد. فرض کنید PN(k) احتمال وجود k مشتری در اتاق انتظار و تعداد کل مشتریان N باشد. در این صورت :

از آنجائیکه ، PN(k) از رتبه 1/N خواهد بود. اگر N PN(k) به شرط آنکه k/N=ξ
هنگامی که N→ ∞ دارای حد معین باشد دیگر نیازی به تمامی نتایج بخش قبلی برای بدست آوردن این حد
نداریم . به عبارت دیگر اگر فرض کنیم :
با نرمال سازی :
و سپس به کارگیری رابطه (5) برای Nهای بزرگ
(ρ+1)f(ξ) = (1- 1/N)-1f( ( 1- 1/N )-1(ξ-1/N) ) + ρ( 1+ 1/N )-1f(ξ(1+ 1/N)-1)
با بکارگیری بسط تیلور برای مراتب 1/N معادلات دیفرانسیل زیر بدست می آید:

که جواب نرمال شده زیر را در بر دارد:

از سوی دیگر برای برقراری معادله (4) باید :

بسط سری تیلور برای 1/N دارای کمترین مرتبه f(0) = ρf(1) می باشد که بوسیله تابع f رابطه (13) حاصل
می شود. اما اولین مرتبه f(1) + f΄(1) = -f(0) بوسیله این تابع برقرار نمی شود و آنچه بدست خواهد آمد
f(1) + f΄(1) = f(0)/ρ2 می باشد. بنابراین تابع f در تمامی معادلات مربوطه صدق کند. این بدان معناست که NPN([Nξ]) وقتی N→ ∞ دارای حد نیست . این موضوع بصورت قضیه زیر بیان شده است.
قضیه 2 : توزیعNPN([Nξ]) به ازای مقادیر بزرگ N هنگامی که k/N مقدار ثابت ξ را داشته باشد به صورت زیر است:

که در آن fN ~gN و یا limN→∞(fN/gN) = 1

 

اثبات قضیه 2 : با بکارگیری فرمولهای موجود برای (k,N-k) π داریم :

به ازای k = 0,…,N-2 و ξ = k/N (بنابراین0 ≤ ξ < 1 ) .به ازای k<N-1 داریم s0N-k-1=0 . همچنین :

نحوه عملکرد N را با استفاده از روشهای به کار گرفته شده در ضمیمه کتاب JANSSEN و DE JONG (2000) می توان بدست آورد.هنگامی که هر دو عدد N وk بزرگ باشند، با فرضξ = k/N (ξ عدد ثابت) ، عباراتی که در روابط (15) و (16) بین براکتهای مجذور هستند به یک میل می کنند. بنابراین به ازای مقادیر بزرگ m ، m ρ نقش کمی را در مقدار کلی زیگما دارد. با لگاریتم گیری و بسط تیلور برای m ρ حول 0 =m ρ و به توان نمایی رساندن، نتایج زیر حاصل می گردند :


با تعریف K = N(1-ρ)(1-ξ(1-ρ)) و ضرب و تقسیم عبارت فوق بر K داریم :

این عبارت برای PN(N-1) نیز (علاوه بر مقادیر بزرگN ) معتبر است.( با قرار دادن = 1 ξ و K=Nρ(1-ρ) )
از آنجائیکه :

بنابراین خطای ایجاد شده بصورت نمایی کاهش می یابد. در حقیقت محدوده زیگما بستن برروی m می تواند به
کل اعداد صحیح با خطای قابل اغماض گسترش یابد. با توجه به اینکه برای m ≤ 0 و 0 < ρ < 1 ، ρm ≥ 1
می باشد بنابراین حاصل زیگما با افزایش K به سرعت کاهش می یابد.فقط مقادیر بزرگ m ( m→∞ ) در محاسبه مجموعی که برروی K بسته می شود نقش دارد. با تعریف t = -ln(ρ) > 0 و s = ln(K) خواهیم داشت :

همانطور که مشاهده می کنید عبارت سمت راست تابعی متناوب از s با دوره تناوب t می باشد بنابراین آن را
می توان به صورت یک سری فوریه نوشت :

که در آن :

با جایگزینی این عبارت aq(t) در رابطه (19) و استفاده از روابط (17) و (18) اثبات قضیه را ادامه می دهیم.
با توجه به خاصیت بازتابی معروف تابع گاما

دامنه نوسانات ||aq(t) در ضرایب فوریه به صورت نمایی توسط عامل نمایی exp(-π|q|/t) کاهش می یابد. بنابراین به منظور بدست آوردن جواب عددی دقیق برای مقادیر کوچک ρ یا به عبارت دیگر مقادیر بزرگ t، عبارات بیشتری مورد نیاز می باشد. برای مقادیر نزدیک به یک ρ یا مقادیر کوچک t تعداد کمی عبارت مورد نیاز است. دامنه تغییر عبارات نوسانی در سمت رابطه (14) بستگی به |q| ، ρ و ξ دارد و این مقادیر نیز به مقدار N وابسته هستند.

 

5. توزیع زمان اقامت :
فرض کنید S1 و S2 بترتیب زمان اقامت مشتری (به صورت ثابت) در اتاق انتظار و صف سرویس باشد. می خواهیم تبدیل دو متغیره Laplace –Stieltjes را برای این زمانهای اقامت ثابت بدست آوریم:
قضیه 3 : تبدیل دومتغیره Laplace –Stieltjes { } از رابطه زیر حاصل
می شود :

اثبات قضیه 3 : براساس خاصیت PASTA یک مشتری به هنگام ورود با احتمال (k,n) π در وضعیت (k,n) سیستم قرار می گیرد. اگر (k,n) = (0,0) مشتری فوراً سرویس در یافت می کند. اگر (k,n) ≠ (0,0) ابتدا مشتری مجبور است در اتاق انتظار صبر کند در حالیکه n مشتری در صف سرویس هستند. اگر در طول این زمان، r مشتری دیگر وارد شوند، مشتری مورد نظر ما با احتمال ( k+1+r )-1 ، نفر ℓ ام صف سرویس خواهد بود.
بنابراین می توان نوشت :

 

حال با استفاده از فرمولهای :

و همچنین :

با جایگذاری در فرمول بالا خواهیم داشت :

که در آن :

با جمع بستن بر روی k و r و استفاده از فرمول زیر :

می توان نتیجه گرفت :

بنابراین قضیه به اثبات رسید.
با جایگزینی u = 0 و = 0υ در رابطه (20) و استفاده از :

داریم :


و همچنین :

نکته پنجم : زمان اقامت در اتاق انتظار (که بزرگتر از صفر می باشد) و زمان اقامت در صف سرویس برابر ترکیب هندسی بدست آمده می باشد.
دو لحظه ابتداییS1 (زمان اقامت در اتاق انتظار) و S2 (زمان اقامت در صف سرویس ) را در نظر بگیرید. قرار
می دهیم : S = S1 + S2 .با توجه به رابطه (24) برای لحظه S2 داریم :

 

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  15  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید


دانلود با لینک مستقیم


دانلود مقاله مدل صف M/M/1 با سرویس دهی دروازه ای به ترتیب تصادفی -صنایع

تحقیق در مورد ترتیب نزول سوره های قرآن

اختصاصی از فی توو تحقیق در مورد ترتیب نزول سوره های قرآن دانلود با لینک مستقیم و پر سرعت .

تحقیق در مورد ترتیب نزول سوره های قرآن


تحقیق در مورد ترتیب نزول سوره های قرآن

لینک پرداخت و دانلود *پایین مطلب*

 

فرمت فایل:Word (قابل ویرایش و آماده پرینت)

 

تعداد صفحه:4

 

 

 

 

 

ترتیب نزول سوره های قرآن و در صورت امکان ترتیب نزول آیات آن را بیان کنید.



السور المکیه
ترتیب النزول السوره ترتیب المصحف
1 العلق 96
2 القلم 68
3 المزمل 73
4 المدثر 74
5 الفاتحه(1) 1
6 المسد 111
7 التکویر 81
8 الاعلی 87
9 اللیل 92
10 الفجر 89
11 الضحی 93
12 الشرح 94
13 العصر 103
14 العادیات 100
15 الکوثر 108
16 التکاثر 102
17 الماعون 107
18 الکافرون 109
19 الفیل 105
20 الفلق 113
21 الناس 114
22 التوحید 112
23 النجم 53
24 عبس 80
25 القدر 97
26 الشمس 91
27 البروج 85
28 التین 95
29 قریش 106
30 القارعه 101
31 القیامه 75


دانلود با لینک مستقیم


تحقیق در مورد ترتیب نزول سوره های قرآن

دانلودمقاله ایده آل های خطی به ترتیب کوهن-مکوالی

اختصاصی از فی توو دانلودمقاله ایده آل های خطی به ترتیب کوهن-مکوالی دانلود با لینک مستقیم و پر سرعت .

 

 

 


چکیده- G را یک نمودار غیرمستقیم ساده n راسی در نظر بگیرید و بگذارید برایده آل خطی مرتبطش دلالت کند. مانشان می دهیم که تمام نمودارهای و تری G ، به ترتیب کوهن- مکوالی هستند ، دلیل ما بر پایه نشان دادن این است که دوگانه الکساندر I(G) ،خطی و ازمولفه است.
نتیجه ما فرضیه فریدی را که می گوید ایده آل درخت ساده شده به ترتیب کوهن- مکوالی، هرزوگ، هیبی، می باشد، وفرضیه ژنگ که می گوید یک نمودار وتری کوهن-مکوالی است اگر و تنها اگر ایده آل خطی اش در هم ریخته نباشد، را تکمیل می کند. ما همچنین ویژگی های دایره های مرتب کوهن- مکوالی را بیان می کنیم و نمونه‌هایی از گراف های مرتب غیروتری کوهن- مکوالی را هم ارائه می کنیم.

 

1-مقدمه
G را یک گراف ساده n راسی در نظر بگیرید پس G هیچ حلقه یا خطوط چندگانه ای پهن دو راس ندارد.) رئوس ومجموعه های خطی G توسط EG,VG را به ترتیب نشان دهید. ما ایده آل تک جمله ای غیر مربع چهارگانه با K که یک میزان است و جایی که را به G ارتباط می دهیم.ایده ال ایده آل خطی Gنامیده می شود.
توجه اولیه این مقاله ایده آل های خطی گراف های وتری است. یک گراف G وتری است اگر هر دایره طول یک وتر داشته باشد. اینجا اگر ،خطوط یک دایره طول n باشند، ما می گوییم که دایره وری یک وتر دارد اگر دو راس xj,xi در دایره به نحوی وجود داشته باشند که یک خط برای G باشند اما خطی در دایره نباشد.
ما می گوییم که یگ گراف G کوهن –مکوالی است اگر کوهن-مکوالی باشد. چنانکه هرزوگ، هیبی و ژنگ اشاره می کنند، طبقه بندی تمام گراف های کوهن-مکوالی شاید اکنون قابل کشیدن نباشند، این مسئله به سختی طبقه بندی کردن تمام مجموعه های ساده شده کوهن-مکوالی است.]9[.البته هرزوگ، هیبی و ژنگ در ]9[ ثابت کردند که وقتی G یک گراف وتری باشد،پس G در هر میدانی کوهن-مکوالی است اگر وفقط اگر به هم نریخته باشد.
ویژگی کوهن –مکوالی به ترتیب بودن، که شرایطی است ضعیف تر از کوهن-مکوالی بودن، توسط استنلی ]14[ در ارتباط با تئوری قابلیت جدا شدن غیرخالص معرفی شد.
تعریف 1-1- را در نظر بگیرید. یک M معیار B درجه دار کوهن –مکوالی به ترتیب نامیده می شود اگر یک تصفیه معین از معیارهای R درجه بندی وجود داشته باشد.

 

به نحوی که کوهن –مکوالی باشد، و ابعاد کرول خارج قسمت در حال افزایش باشند:

 

ما میگوییم یک گراف G کوهن-مکوالی به ترتیب است و در K اگر کوهن-مکوالی به ترتیب باشد. ما می توانیم به نتیجه هرزوگ، هیبی و ژنگ بر سیم البته با استفاده از این تضعیف شرایط کوهن-مکوالی. نتیجه اصلی ما فرضیه زیر است (که مستقل از خاصیت (K) است.
فرضیه 2-1 فرضیه 2-3.تمام گراف های وتری کوهن-مکوالی به ترتیب هستند.
بنابراین حتی گراف های وتری که ایده آل های خطی نشان در هم نریخته نیستند نیز هنوز یک ویژگی جبری را دارا هستند.فرضیه 2-3 همچنین حالت یک بعدی کار فردی در توده های ساده شده ]3[ را نیز عمومیت می بخشد.
مقاله ما به صورت زیر سازمان می یابد. در قسمت بعدی ، ما نتایجی از این ادبیات درباره دوگانگی الکساندر ودرباره گراف های وتری جمع می کنیم. در بخش 3،فرضیه 2.3 را ثابت می کنیم.
ما برخی از گراف های غیروتری در قسمت 4 را که دایره های کوهن-مکوالی را به ترتیب طبقه بندی می کنند بررسی می کنیم و در مورد برخی ازویژگی های گراف‌های شامل دایره های –n برای n>3 تحقیق می کنیم.
همچنین شرایط کافی را برای گرافی که نمی تواند کوهن-مکوالی به ترتیب باشد ،ارائه می کنیم.
2-اجزا مورد نیاز
درطول این مقاله، G بر یک گراف ساده روی رئوس n با مجموعه نقطه ای VG ومجموعه خطی EG دلالت می کند. ایده آل خطی ،جایی که را به G مربوط می سازیم.
گراف کامل در رئوس n که بر Kn دلالت شده است،گرافی است با مجموعه خطی ، یعنی گراف این ویژگی را دارد که خطی بین هر جفت رئوس وجود دارد. اگر x نقطه ای در G باشد باید بنویسیم N(x) که بر همسایه‌های x دلالت کند،یعنی آن رئوسی که خطی را با x شریکند. ما ابتدا باید به حالتی توجه کنیم که G یک گرافی وتری است.گراف های وتری ویژگی زیر را دارند:
لم 21- G,[6,7,12,15] را یک گراف وتری در نظر بگیرید، x را یک زیر نمودار کامل از G در نظر بگیرید.اگر ،پس نقطه ای به نام وجود داردکه زیرگراف به وجود آمده توسط مجموعه همسایه مربوط به x، یک گراف کامل باشد. این امر همچنین زیر نمودار به وجود آمده در را وادار می کند که یک زیر گراف کامل باشد.
یک پوشش راس گراف G یک زیر مجموعه از VG است به نحوی که هر خط G حداقل به یک راس A برخوردار داشته باشد. توجه کنیدکه ما هیچ وقت به داشتن یک راس مجزا در پوشش راس نیاز نداریم.
مثلا ، اگر ما گرافی در سه راس داشته باشیم و تنها خط موجود باشد، پس هر دو پوشش های راس هستند. پوشش های راس یک گراف G به دو گانه الکساندر مربوطند.
تعریف 2-2- I را یک ایده آل تک جمله ای غیرمربع در نظر بگیرید. دوگانه الکساندر غیرمربع ایده آل
است.

 

پس نتیجه ساده ای گرفته می شود:
لم 3-2- G را یک گراف ساده با ایده آل خطی در نظر بگیرید.پس

یک پوشش راس برای G است.

 

یک تجزیه درجه بندی شده آزاد حداقل به هر ایده آل همگون I از R مرتبط است.

که در آن R(j) بر معیار R به دست آمده از تغییر درجات R توسط j دلالت می کند. عدد ij,Bi,j(I) امین عدد درجه بندی شده «بتی» مربوط به Iاست و برابر تعداد حداقل مولد های درجه j در I امین معیار یک جفتی است.

 

تعریف 4-2-فرض کنید که I ایده آل همگون R است که تمام مولدهایشان در جه d دارند. پس I یک تجزیه خطی دارد اگر تما برای تمام برای یک ایده آل همگون I ، ما (Id) را می نویسیم که بر ایده آل تبدیل شده توسط تمام عناصر که درجه d دارند،دلالت می کند. توجه کنید که (Id) با Id فرق می کند، که فضای برداری تمام عناصر I با درجه d است.هرزوگ وهیبی تعریف زیر را در ]7[ معرفی کردند.
تعریف 5-2-یک ایده آل همگون I خطی و از مولفه است اگر (Id) یک تجزیه خطی برای تمام d4 داشته باشد.
اگر I توسط تک جمله ای های غیرمربع تبدیل شود،بگذارید I(d) بر ایده‌آل تبدیل شده توسط تک جمله های غیر مربع درجه d برای I دلالت کند. هرزوگ وهیبی ] 7،قضیه 5-1[ نشان دادند که :
فرضیه 6-2-فرض کنید I یک ایده آل تک جمله ای تبدیل شده توسط تک جمله های غیرمربع باشد.
پس I خطی و از مولفه است اگر وتنها اگر I[d] یک تجزیه خطی برای تمامی d ها داشته باشد.
یک فرد می تواند از خارج قسمت های خطی برای تعیین اینکه ایده آل یک تجزیه خطی دارد استفاده کند.
تعریف 7-2- I را ایده آل تک جمله ای R در نظر بگیرید. می گوییم که I خارج قسمت های خطی دارد اگر برای برخی ترتیب های مولد های حداقل I با
درجه
توسط یک زیر مجموعه تبدیل شود.
سپس ما به ]لم [3,5-2 نیازمندیم:
لم 8-2-اگر یک ایده آل تک جمله باشد که خارج قسمت های خطی داشته باشد، و تمامی uiها درجه یکسانی داشته باشند.در نتیجه I یک تجزیه خطی دارد.
ما این سمت را با استفاده از این نظرها برای ایده آل های خطی به پایان می بریم.
لم 9-2-اگر ایده آل خطی گراف G باشد در نتیجه

یک پوشش راس برای G در اندازه d است.
اثبات. چون توسط پوشش های راس حداقل تبدیل شده است،هر حداقل غیرمربعی از درجه d در به مجموعه ای از رئوس d مرتبط است که شامل یک پوشش راس حداقل باشد و در نتیجه رئوس d نیز یک پوشش راس بر G را تشکیل می دهند.
لم را یک گراف کامل در رئوس n در نظر بگیرید. برای هر d، خارج قسمت های خطی دارد، در نتیجه خطی وهم جهت مولفه است.
اثبات: ما نشان میدهیم که برای هر d ، خارج قسمت های خطی دارد وبنابراین یک تجزیه خطی دارد که یعنی خطی هم جهت مولفه توسط فرضیه 6-2- است.
پوشش های رئوس حداقل kn همگی زیر مجموعه های با اندازه n-1 هستند. بنابارین توسط لم 9-2 ، وقتی که d=n ، یک ایده آل اصلی است. این حالات به میزان ناچیزی خارج قسمت های خطی دارند. بنابراین برای نشان دادن اینکه که خارج قسمت های خطی دارد. کافی است.

 

فرمت این مقاله به صورت Word و با قابلیت ویرایش میباشد

تعداد صفحات این مقاله  19  صفحه

پس از پرداخت ، میتوانید مقاله را به صورت انلاین دانلود کنید

 


دانلود با لینک مستقیم


دانلودمقاله ایده آل های خطی به ترتیب کوهن-مکوالی

تاثیر محتوای فرکانسی زلزله در ترتیب وقوع و محل تشکیل مفاصل پلاستیک

اختصاصی از فی توو تاثیر محتوای فرکانسی زلزله در ترتیب وقوع و محل تشکیل مفاصل پلاستیک دانلود با لینک مستقیم و پر سرعت .

تاثیر محتوای فرکانسی زلزله در ترتیب وقوع و محل تشکیل مفاصل پلاستیک


تاثیر محتوای فرکانسی زلزله در ترتیب وقوع و محل تشکیل مفاصل پلاستیک

• مقاله با عنوان: تاثیر محتوای فرکانسی زلزله در ترتیب وقوع و محل تشکیل مفاصل پلاستیک 

• نویسندگان: علیرضا مرتضایی ، امیرحسین مهدیون 

• محل انتشار: دهمین کنگره بین المللی مهندسی عمران - دانشگاه تبریز - 15 تا 17 اردیبهشت 94 

• فرمت فایل: PDF و شامل 8 صفحه می باشد.

 

 

 

چکیــــده:

ارزیابی عملکرد لرزه ای سازه ها مستلزم استفاده از زمین لرزه‌های طبیعی ثبت شده یا رکوردهای مصنوعی تولید شده جهت استفاده در تحلیل‌های تاریخچه زمانی غیرخطی است. به سبب پیچیدگی مرتبط با خصوصیات اتلاف انرژی سازه‌ها و مشخصه‌های دینامیکی زمین لرزه‌ها، کیفیت و کفایت نتایج تحلیل‌های دینامیکی غیرالاستیک وابستگی بسیار زیادی به جامعیت گروه رکوردهای زمین لرزه مورد استفاده دارد. وقتی یک زلزله اتفاق می‌افتد، دامنه، فازبندی و محتوای فرکانسی لرزش وابستگی زیادی به مشخصات منبع و خصوصیات لایه خاک و یا سنگ بین منبع و محل ضبط رکورد زلزله دارد. به سبب دلایلی که برشمرده شد، هر زلزله ثبت شده در یک ساختگاه خاص، مشخصه‌های متفاوتی بر حسب دامنه، محتوای فرکانسی و فاز امواج ورودی دارد. بر اساس مطالعات پاسخ لرزه‌ای سازه‌های مهندسی، به خوب مشخص شده آنچه که در بین پارامترهای فوق سبب افزایش خسارات سازه‌ای می‌گردد، محتوای فرکانسی زلزله می‌باشد. لذا در این مقاله، محتوای فرکانسی زمین لرزه به عنوان اصلی‌ترین عامل که پاسخ غیرالاستیک سازه‌های بتن آرمه را تحت تاثیر قرار می‌دهد، در نظر گرفته می‌شود. روش‌های مختلف تعیین محتوای فرکانسی زمین لرزه‌ها ارائه شده و بهترین روش جهت تعیین محتوای فرکانسی انتخاب می‌گردد. به کمک روش انتخابی محتوای فرکانسی هفت رکورد زمین لرزه بر اساس شاخص مربوطه تعیین شده و تاثیر این شاخص بر روند وقوع و محل تشکیل مفاصیل پلاستیک ساختمان‌های 7، 10 و 13 مورد بررسی قرار می‌گیرد. نتایج تحلیل نشان می‌دهند به دلیل مشخصات متفاوت زمین لرزه‌ها، الگوهای مفصل پلاستیک که حاصل از تحریکات لرزه‌ای می‌باشند، نشان دهنده تغییرات در بین زمین لرزه‌ها هستند. نتایج همچنین نشان می‌دهند که در یک زمین لرزه با محتوای فرکانسی بالا، مفاصل پلاستیک بیشتری در ستون‌های قسمت تحتانی سازه شکل گرفته که بعضا منجر به شکست ترد این طبقات می‌شود. برای زمین لرزه‌هایی که به یک دامنه حداکثر شتاب زمین مقیاس شدند، زمین لرزه‌های با محتوای فرکانسی پایین مفاصل پلاستیک بیشتری را در بالای سازه شکل دادند.

________________________________

** توجه: خواهشمندیم در صورت هرگونه مشکل در روند خرید و دریافت فایل از طریق بخش پشتیبانی در سایت مشکل خود را گزارش دهید. **

** توجه: در صورت مشکل در باز شدن فایل PDF مقالات نام فایل را به انگلیسی Rename کنید. **

** درخواست مقالات کنفرانس‌ها و همایش‌ها: با ارسال عنوان مقالات درخواستی خود به ایمیل civil.sellfile.ir@gmail.com پس از قرار گرفتن مقالات در سایت به راحتی اقدام به خرید و دریافت مقالات مورد نظر خود نمایید. **


دانلود با لینک مستقیم


تاثیر محتوای فرکانسی زلزله در ترتیب وقوع و محل تشکیل مفاصل پلاستیک